🕞 Finst

Sustainability indicators for crypto-assets

Disclosures in accordance with Article 66 (5) MiCAR.

This report was provided by Crypto Risk Metrics.

2025-06-30

Table of Content

Preamble	12
Overview	12
Sustainability indicators according to MiCAR 66 (5)	22
Bitcoin	22
Dogecoin	25
Litecoin	28
Ethereum Classic Ether	31
Bitcoin Cash	33
Zcash	37
Core	41
eCash	43
Stacks	47
Solana SOL	50
Internet Computer Token	53
Verge	57
TRON TRX	60
Filecoin	63
Ethereum Eth	68
Conflux	70
Toncoin	73
NEAR Protocol	76
Avalanche AVAX	81
Cardano ADA	84
MultiversX EGLD	87
Polkadot DOT	92
Arweave	98
Flow	101
Kusama	104
USDC	107
Algorand	127
Sui	129
Ontology	131
Ripple XRP	133
Tezos	137

Aptos Coin	141
Injective Token	143
KAVA	148
SEI	154
Cosmos ATOM	156
Flare	162
Zilliqa	164
Cronos	169
Osmosis	171
Gnosis	174
IOST	175
Mina	178
Polygon POL	180
Binance Coin	184
sonic	187
Hedera HBAR	188
Venom	190
Celestia	191
MovieBloc	194
Moonbeam	195
WAX	197
Stellar Lumen	199
Secret	201
VeChain	203
THORChain	207
Celo	208
Ronin	212
MANTRA	213
Lisk	220
Moonriver	222
Bittensor	223
Chiliz	225
Metis Token	230
Songbird	233
scroll	234
Boba Token	235

Contentos	238
Coq Inu	239
Balancer	241
ZKsync	248
ChainLink Token	250
Рере	263
Curve DAO Token	265
Uniswap	271
Pendle	277
Aave Token	282
SHIBA INU	294
SPX6900	295
mog_coin	296
Paxos Gold	298
Ondo	303
Artificial Superintelligence Alliance	304
ren	308
Axie Infinity Shard	313
cyber	320
Render Token	324
Arbitrum	330
Pudgy Penguins	332
Ethena	335
Liquity	336
Eigen Layer	338
Pirate Nation	339
ApeCoin	340
Convex Token	343
Quant	344
Livepeer	346
Status Network Token	348
Gala	350
Maker	351
Xai	355
PancakeSwap	358
Tellor Tributes	365

Aethir Token	372
Verasity	373
VELO	374
ether.fi	379
usual	380
Memecoin	381
reserve_rights	382
Worldcoin	384
Pixels	387
Lido DAO Token	389
FLOKI	396
dogwifhat	399
Graph Token	402
SuperVerse	405
Immutable X	406
Threshold Network Token	409
OriginToken	410
LoopringCoin V2	411
Bonk	412
Morpho Token	415
Turbo	417
SAND	418
Dogelon Mars	423
JasmyCoin	430
Beam	432
Euro Coin	435
Clearpool	436
SushiSwap	437
galxe	444
OFFICIAL TRUMP	447
Smooth Love Potion	450
paal_ai	452
Wormhole Token	454
BitTorrent New	460
Ethereum Name Service	464
Axelar	467

deBridge	480
AltLayer Token	483
Compound	486
Synthetix Network	495
LayerZero	508
zigchain	511
Echelon Prime	518
Layer 3	519
Frax Share	521
Bancor	529
Myria	533
Decentraland	535
Telcoin	539
Rarible	542
Arkham	543
1INCH Token	545
Raydium	553
dYdX	556
Amp	559
Aerodrome	564
Illuvium	565
CoW Protocol Token	569
Synapse	570
Limewire	582
JoeToken	586
SuperRare	591
LeverFi	592
StarkNet Token	594
AlphaToken	595
Big Time	599
Banana	601
AIOZ Network	602
JUST	603
realio_network	605
StargateToken	611
Dexe	619

Kamino	622
yearn finance	625
UMA Voting Token v1	637
swell	638
Helium	640
Basic Attention Token	643
BENQI	652
Audius	655
Moo Deng	659
DIA	662
Mask Network	663
zentry	668
Alchemy	671
galatasaray_s.k.	674
Ankr	675
Neiro	688
Orderly Network	689
Safe	691
open_loot	692
Rocket Pool	693
Orbs	696
Spell Token	701
tokenfi	706
Perpetual	709
Across Protocol Token	710
Renzo	712
0x Protocol Token	713
Wootrade Network	718
Blur	728
Stader	729
Goatseus Maximus	730
Numeraire	733
ssv network	734
Optimism	736
Jito	738
babydoge	741

API3	746
Sidus	747
SUNDOG	748
Portal	750
Hashflow	751
seedify	753
HoloToken	757
Cartesi Token	759
SKALE	760
Biconomy Token	762
Pyth Network	763
mon	765
OMGToken	767
Vanar	770
GMX	773
foxy	777
MAGIC	778
Grass	781
ladys	783
cat in a dogs world	786
shrapnel	789
spectral	793
Yield Guild Games Token	795
StorjToken	800
Covalent X Token	801
puffer	802
APENFT	803
Request Token	808
Peanut the Squirrel	809
synfutures	812
Golem Network Token	814
Orchid	815
Radicle	816
Vulcan Forged PYR Token	818
Drift	821
SUN	823

Civic	825
Aavegotchi GHST Token	828
Gods Unchained	832
Prom	833
ARPA Token	836
ConstitutionDAO	841
Orca	842
Enzyme	845
dao_maker	848
iEx ec Network Token	849
StaFi	851
SPACE ID	852
Kyber Network Crystal v2	855
BandToken	863
CelerToken	867
Gluwa Creditcoin Vesting Token	870
Dent	871
PowerLedger	872
Bounce Token	873
Clover	876
Marlin POND	878
flux	880
TrueFi	887
TARS AI	888
IO.NET	890
Chromia	893
Sweat Economy	894
Dusk Network	896
Gmt	899
rss3	901
Gains Network	903
Highstreet Token	905
Radiant Capital	908
DODO bird	913
Jupiter	917
Cloud	920

Chainflip	923
chillguy	924
BOOK OF MEME	927
Access Protocol	930
apex_protocol	932
aixbt by Virtuals	935
Maverick Protocol	936
Heima	939
NYM	940
Degen	942
Magic Eden	943
ChainGPT	946
MYRO	949
Brett	951
Venus	953
Bonfida	956
Parcl	958
carv	961
Nakamoto Games	966
ArbDoge Al	969
Open Campus	971
Ultiverse	974
Automata	976
Tensor	981
vita_inu	984
BinaryX	987
Coin98	989
polydoge	995
Standard Tokenization Protocol	998
Trust Wallet	999
Mobox	1004
Lista DAO	1007
SafePal Token	1009
Shentu	1012
Ice Network	1015
BakeryToken	1020

notcoin	1023
vertex_protocol	1025
Tokocrypto Token	1027
Pundi X Token	1030
Coti	1031
Hooked Protocol	1034
NFPrompt	1036
Leo Token	1039
My Neighbor Alice	1042

Preamble

About Crypto Asset Service Provider (CASP)

Name of the CASP: Finst B.V. Street and number: Herengracht 454 City: Amsterdam Country: Netherlands LEI: 724500UI8UD7HKGVJX65

About this report

This disclosure serves as evidence of compliance with the regulatory requirements of MiCAR 66 (5). This requirement obliges crypto asset service providers to disclose significant adverse factors affecting the climate and the environment. In particular, this disclosure complies with the requirements of "Commission Regulation (EU) 2025/422 of December 17, 2024, supplementing Regulation (EU) 2023/1114 of the European Parliament and of the Council with regard to regulatory technical standards specifying the content, methods and presentation of information relating to sustainability indicators related to climate-related and other environmental impacts". The optional information specified in Article 6, par. 8 (a) to (d) DR 2025/422 is not included.

This report is valid until material changes occur in the data, which will result in an immediate adjustment of this report.

Overview

#	Crypto-Asset Name	Crypto-Asset FFG	Energy consumption (kWh per calendar year)
1	Bitcoin	V15WLZJMF	217,157,718,972.28
2	Dogecoin	35PLJP6J7	8,440,994,855.68
3	Litecoin	D74JZ1VRD	1,113,312,013.65
4	Ethereum Classic Ether	DGMQMFZD4	811,024,149.16
5	Bitcoin Cash	919BF3W7L	664,070,647.99
6	Zcash	7JPSSTXMS	322,297,378.35
7	Core	5JRWC5LZQ	146,642,047.31
8	eCash	CCBL9HXG9	47,967,756.39
9	Stacks	PQTGLSGRG	9,772,097.35
10	Solana SOL	6QZ1LNC12	6,244,785.00
11	Internet Computer Token	4DHTM5D7P	5,834,160.00
12	Verge	6N3DCCBCZ	5,039,684.68
13	TRON TRX	HZ9HHNPLG	3,892,170.49
14	Filecoin	S6702SWRZ	2,409,025.72
15	Ethereum Eth	D5RG2FHH0	2,207,257.20

This is an overview of the core indicator energy consumption but does not represent the reporting according to MiCAR 66 (5). Please find the full disclosure below.

#	Crypto-Asset Name	Crypto-Asset FFG	Energy consumption (kWh per calendar year)
16	Conflux	2K9VS42WV	1,837,140.73
17	Toncoin	KK12JMBTX	1,407,075.00
18	NEAR Protocol	MXXM59Z0T	919,959.28
19	Avalanche AVAX	S6JCBF70N	822,050.98
20	Cardano ADA	76QS7QCXB	813,103.20
21	MultiversX EGLD	H1V5PHW7P	742,016.96
22	Polkadot DOT	SGD9NLTRG	630,739.80
23	Arweave	CPX6BGPR0	629,407.21
24	Flow	6T49BCSXZ	513,558.03
25	Kusama	PX4GCX5B5	474,616.80
26	USDC	TJWK5QTRK	459,626.87
27	Algorand	K8S6W74KS	420,961.80
28	Sui	64RFW3D8P	385,264.80
29	Ontology	M2W3DQB67	349,261.20
30	Ripple XRP	42PHJB2BS	299,631.02
31	Tezos	FLJPFR9RS	282,247.65
32	Aptos Coin	C4CQCGLH2	262,800.00
33	Injective Token	92M9B0DZ7	237,142.60
34	KAVA	2HZXZQLKX	236,782.80
35	SEI	XCDVP53WR	210,345.12
36	Cosmos ATOM	6C7F2WVZH	186,473.17
37	Flare	DVRV6HSK5	170,820.00
38	Zilliqa	ZJ9HGBW9R	157,680.92
39	Cronos	GWM30MLW3	107,167.53
40	Osmosis	TDS6NVZ46	105,130.51
41	Gnosis	/	104,594.40
42	IOST	N156HCF29	103,017.60
43	Mina	133H6VJ48	92,768.40
44	Polygon POL	GB8DQ8DWN	92,432.58
45	Binance Coin	8N2VXJKB1	90,228.00
46	sonic	1	84,358.80
47	Hedera HBAR	2WWB8QS47	82,133.21
48	Venom	/	82,125.00
49	Celestia	M7NN4STH9	77,920.20
50	MovieBloc	/	76,034.16

#	Crypto-Asset Name	Crypto-Asset FFG	Energy consumption (kWh per calendar year)
51	Moonbeam	K4HV4GN5K	65,700.00
52	WAX	H76QDN5MF	54,750.00
53	Stellar Lumen	ZCN8SR2H7	52,560.00
54	Secret	93XJT88VH	52,560.00
55	VeChain	M2DJLNPDW	45,991.24
56	THORChain	426HSHMDM	45,990.00
57	Celo	VWWMVDM0J	39,420.00
58	Ronin	TVJX4PPWF	39,420.00
59	MANTRA	11B60HRDS	33,984.70
60	Lisk	7J6VRX7JZ	32,850.00
61	Moonriver	KW2NCBQ6M	26,280.00
62	Bittensor	/	25,228.80
63	Chiliz	KNS06KRXQ	23,196.51
64	Metis Token	RCGXTQ3G0	21,162.77
65	Songbird	1GB15J049	21,024.00
66	scroll	/	20,235.60
67	Boba Token	L7CKSKP8K	19,763.65
68	Contentos	/	14,979.60
69	Coq Inu	6KJB18HSF	11,467.26
70	Balancer	Q8QDMDD7D	10,824.93
71	ZKsync	BCBLPFRBX	6,571.65
72	ChainLink Token	3R3J70FDR	5,553.43
73	Рере	J41R6PF81	4,663.77
74	Curve DAO Token	P8DXFQ5LD	4,431.96
75	Uniswap	XMB84LZBZ	4,252.18
76	Pendle	5RJT6339X	3,860.81
77	Aave Token	H618RN577	3,836.89
78	SHIBA INU	M4HFTFNPC	3,708.03
79	SPX6900	V9FVRLGKC	3,663.10
80	mog_coin	/	3,246.23
81	Paxos Gold	RPGFC7GN3	3,024.45
82	Ondo	WKH09L3DV	2,504.03
83	Artificial Superintelligence Alliance	/	2,037.95
84	ren	/	1,881.87
85	Axie Infinity Shard	RTTDS5MHT	1,853.43

#	Crypto-Asset Name	Crypto-Asset FFG	Energy consumption (kWh per calendar year)
86	cyber	/	1,757.91
87	Render Token	XROJSKLNZ	1,638.80
88	Arbitrum	44TP35HF9	1,549.91
89	Pudgy Penguins	13JBPT88T	1,354.03
90	Ethena	/	1,302.70
91	Liquity	C5D1WG11D	1,244.57
92	Eigen Layer	/	1,219.38
93	Pirate Nation	/	1,134.73
94	ApeCoin	7WKVRWPNR	1,060.14
95	Convex Token	MDLR8VGRS	1,044.99
96	Quant	L8M8X31JL	1,017.50
97	Livepeer	J80JRP8VM	1,009.87
98	Status Network Token	X41MS94D1	1,001.88
99	Gala	XS363HTZB	969.67
100	Maker	SV17PZF24	961.17
101	Xai	/	955.52
102	PancakeSwap	LZ3V3Z6FD	874.24
103	Tellor Tributes	B1P335VP1	835.85
104	Aethir Token	1SL20Z9P1	798.06
105	Verasity	CKFKPWMS6	791.65
106	VELO	Q52FMJ684	785.53
107	ether.fi	/	758.22
108	usual	/	752.65
109	Memecoin	THW1BFN8J	743.08
110	reserve_rights	/	738.74
111	Worldcoin	BJD0TZ8V1	709.58
112	Pixels	5HPLWBHDP	683.84
113	Lido DAO Token	8W8GLGL65	658.79
114	FLOKI	R1XC4HQT5	649.41
115	dogwifhat	10G31SK86	631.13
116	Graph Token	VMQPVH41W	602.31
117	SuperVerse	N886T4TWH	602.12
118	Immutable X	9LJOXLJBT	601.03
119	Threshold Network Token	LTSB7W5CZ	595.94
120	OriginToken	4N5X371R3	595.70

#	Crypto-Asset Name	Crypto-Asset FFG	Energy consumption (kWh per calendar year)
121	LoopringCoin V2	NZCPF6J82	563.61
122	Bonk	Н6КЈТТОСР	557.54
123	Morpho Token	CH7NXRXR1	556.03
124	Turbo	3GCHWJSWC	544.23
125	SAND	BVGX9WS2C	543.86
126	Dogelon Mars	K1S7NRV32	520.00
127	JasmyCoin	CTLCNFBZW	519.53
128	Beam	X70FVW3GT	518.15
129	Euro Coin	/	511.41
130	Clearpool	J2N57NP8S	496.40
131	SushiSwap	C1Z2W2TT1	488.20
132	galxe	/	482.53
133	OFFICIAL TRUMP	LJDPGNXXK	482.42
134	Smooth Love Potion	1JMZBTS1G	473.81
135	paal_ai	/	472.54
136	Wormhole Token	25J14XV4F	471.34
137	BitTorrent New	2MTMX7RJR	466.61
138	Ethereum Name Service	B70SMJ5DQ	452.20
139	Axelar	ZN1MJGVLX	449.01
140	deBridge	NT91TJWNC	444.92
141	AltLayer Token	B7HS0LP5T	442.11
142	Compound	KCHF60NW7	420.13
143	Synthetix Network	RSN26S0SB	418.73
144	LayerZero	C0HH6QTBN	409.92
145	zigchain	/	409.59
146	Echelon Prime	1VJ02JBZN	402.36
147	Layer 3	/	401.57
148	Frax Share	BWNWXP3R1	394.68
149	Bancor	HXXRZB3CB	391.00
150	Myria	/	386.80
151	Decentraland	21C6LF4SP	381.85
152	Telcoin	Q95MMRGRC	378.73
153	Rarible	2GFN66H47	369.73
154	Arkham	327V1DQ8H	361.61
155	1INCH Token	SVRFHQRZN	358.19

#	Crypto-Asset Name	Crypto-Asset FFG	Energy consumption (kWh per calendar year)
156	Raydium	7HFXRDFHH	350.21
157	dYdX	K8XRF7MFZ	348.54
158	Amp	BCR85DWDR	345.99
159	Aerodrome	N26VFQW6M	337.36
160	Illuvium	1J74CCB0S	337.03
161	CoW Protocol Token	SF0HRQBH7	334.97
162	Synapse	GS8ZHZ81L	327.98
163	Limewire	/	311.78
164	JoeToken	VV204Q4J4	309.00
165	SuperRare	BP7F347WD	304.09
166	LeverFi	PBVTW87G4	303.00
167	StarkNet Token	NLWPNNWQZ	294.64
168	AlphaToken	JGRKWORKC	289.55
169	Big Time	DM8NPMHHW	288.59
170	Banana	5WZXL33SN	284.47
171	AIOZ Network	BRPL13L58	279.99
172	JUST	DFGV0P5MN	273.77
173	realio_network	/	268.94
174	StargateToken	RGP779MCT	261.94
175	Dexe	TZRK30R6L	258.96
176	Kamino	/	240.51
177	yearn finance	LS56Z3QRX	239.44
178	UMA Voting Token v1	JM4LKD71T	238.57
179	swell	/	229.73
180	Helium	4GX02L80B	226.76
181	Basic Attention Token	51F8M277P	220.53
182	BENQI	HZZKQKLNK	214.61
183	Audius	QZMN0FP41	211.65
184	Moo Deng	H3X85BK7M	209.64
185	DIA	/	207.08
186	Mask Network	VTV046TSP	205.22
187	zentry	/	200.41
188	Alchemy	MBKSZCVQM	196.17
189	galatasaray_s.k.	/	189.82
190	Ankr	BL90MVXW4	182.18

#	Crypto-Asset Name	Crypto-Asset FFG	Energy consumption (kWh per calendar year)
191	Neiro	Q4TK4Q00M	181.29
192	Orderly Network	/	179.84
193	Safe	/	174.39
194	open_loot	/	170.03
195	Rocket Pool	69Q6NLJ3M	163.49
196	Orbs	XW3GWJ75G	160.51
197	Spell Token	2D7W0LVCF	160.06
198	tokenfi	/	158.49
199	Perpetual	VTP4QVSMM	157.19
200	Across Protocol Token	1J4GM86GD	155.25
201	Renzo	/	153.80
202	0x Protocol Token	HX56HH1ZX	148.11
203	Wootrade Network	G4515JG80	147.96
204	Blur	R91SVKW99	147.50
205	Stader	T1CP5RKGN	146.17
206	Goatseus Maximus	7FS1WX5VK	144.67
207	Numeraire	TCRZ9GZRF	142.17
208	ssv network	CLN52KS0K	140.84
209	Optimism	9NRMM2RC4	140.41
210	Jito	/	140.36
211	babydoge	/	139.91
212	API3	9PJW29SF7	138.30
213	Sidus	/	137.81
214	SUNDOG	/	136.78
215	Portal	/	128.13
216	Hashflow	N3K1P14QN	126.92
217	seedify	/	125.46
218	HoloToken	PZHXZVGJB	124.36
219	Cartesi Token	BL44WHVKM	118.80
220	SKALE	9KVZ861DR	118.80
221	Biconomy Token	Z2JL201QX	117.23
222	Pyth Network	3980Q2CPS	113.62
223	mon	/	113.35
224	OMGToken	HRSP99WHX	113.11
225	Vanar	/	112.86

#	Crypto-Asset Name	Crypto-Asset FFG	Energy consumption (kWh per calendar year)
226	GMX	RBR43JPK5	112.66
227	foxy	/	111.69
228	MAGIC	/	111.52
229	Grass	MNCR2MKHP	110.18
230	ladys	/	109.98
231	cat in a dogs world	5Z3NS3NDB	108.31
232	shrapnel	/	106.23
233	spectral	/	102.82
234	Yield Guild Games Token	WV93P8B45	101.16
235	StorjToken	3W1DV4L6C	101.12
236	Covalent X Token	PPFFC2XZM	100.03
237	puffer	/	99.79
238	APENFT	4MH0C4BL6	98.62
239	Request Token	3CJF47H8S	94.82
240	Peanut the Squirrel	75D0KJ7WN	93.22
241	synfutures	/	86.77
242	Golem Network Token	XRWVBJL68	85.38
243	Orchid	WHXOWGOLT	84.65
244	Radicle	315760HRD	83.80
245	Vulcan Forged PYR Token	CPQX5D6RN	82.71
246	Drift	6RVP9P5TB	82.50
247	SUN	DRSV113K4	82.43
248	Civic	95LV3DCWZ	81.55
249	Aavegotchi GHST Token	JCMPCVD08	79.02
250	Gods Unchained	56SF1DNGQ	78.96
251	Prom	/	76.27
252	ARPA Token	XM59GZ001	75.91
253	ConstitutionDAO	M69M29HTV	75.33
254	Orca	QS946B4NN	75.28
255	Enzyme	/	70.02
256	dao_maker	/	69.27
257	iEx ec Network Token	XFRDT01VR	69.15
258	StaFi	3HNH358VV	66.73
259	SPACE ID	C1D0QW564	66.73
260	Kyber Network Crystal v2	LODZSBLVZ	66.57

#	Crypto-Asset Name	Crypto-Asset FFG	Energy consumption (kWh per calendar year)
261	BandToken	1QM2QZQ5N	65.05
262	CelerToken	3W8JZTFR6	61.38
263	Gluwa Creditcoin Vesting Token	CJSC8G9C3	60.31
264	Dent	/	57.40
265	PowerLedger	JWDR0ZDL6	56.80
266	Bounce Token	CX8MCQ9R0	56.12
267	Clover	THR3ML1F1	55.95
268	Marlin POND	QFL8HTJ6P	52.47
269	flux	/	52.44
270	TrueFi	XRDMKF3GK	49.89
271	TARS AI	/	49.54
272	IO.NET	/	47.98
273	Chromia	/	44.20
274	Sweat Economy	DFK01RSF7	41.78
275	Dusk Network	/	40.15
276	Gmt	/	38.68
277	rss3	/	38.15
278	Gains Network	XLGLF5LZ7	36.68
279	Highstreet Token	PM8GC6X1K	36.40
280	Radiant Capital	6SS7PN4RZ	35.62
281	DODO bird	SPRNOWLRS	35.10
282	Jupiter	LKWXN892M	33.78
283	Cloud	TP1T71J95	32.83
284	Chainflip	/	32.21
285	chillguy	/	31.53
286	BOOK OF MEME	JQCH4ZRFB	25.83
287	Access Protocol	N173NQNWW	24.20
288	apex_protocol	/	19.69
289	aixbt by Virtuals	8762TQWQ6	18.65
290	Maverick Protocol	50VKK1B1X	18.56
291	Heima	2Q6SRP1GT	17.32
292	NYM	/	17.08
293	Degen	/	17.06
294	Magic Eden	7987R7S6H	16.95
295	ChainGPT	D3J4ZQGZ4	16.69

#	Crypto-Asset Name	Crypto-Asset FFG	Energy consumption (kWh per calendar year)
296	MYRO	SDLRXM41F	16.48
297	Brett	/	16.48
298	Venus	V1GPCS5PV	15.79
299	Bonfida	K7TKSGGHC	15.05
300	Parcl	JPJ2QRH6R	14.31
301	carv	/	12.36
302	Nakamoto Games	/	11.81
303	ArbDoge Al	1LZW7HGZV	10.65
304	Open Campus	RZ2VMHM33	10.46
305	Ultiverse	/	10.45
306	Automata	N66M8Q49R	9.78
307	Tensor	NTJJ182D7	9.75
308	vita_inu	/	9.73
309	BinaryX	BFTCGQMGC	9.46
310	Coin98	HP7M2N1QF	8.68
311	polydoge	/	7.97
312	Standard Tokenization Protocol	/	7.51
313	Trust Wallet	SKLQJRHFV	6.22
314	Mobox	LXRP46Q0V	6.20
315	Lista DAO	/	6.11
316	SafePal Token	K79PF0NLX	5.17
317	Shentu	/	4.46
318	Ice Network	/	4.30
319	BakeryToken	7XDH0NNG5	4.23
320	notcoin	/	3.80
321	vertex_protocol	/	3.58
322	Tokocrypto Token	ZC1SP684P	1.88
323	Pundi X Token	X088BGGWB	1.21
324	Coti	/	0.89
325	Hooked Protocol	5WC3ZHNC8	0.69
326	NFPrompt	/	0.03
327	Leo Token	59RRBDSKQ	0.00
328	My Neighbor Alice	1S7VZCTZL	0.00

Sustainability indicators

Bitcoin

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Bitcoin	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	217157718972.27750	kWh/a
S.10 Renewable energy consumption	24.1347029759	%
S.11 Energy intensity	7.68892	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	89468124.90418	tCO2e
S.14 GHG intensity	3.16780	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Bitcoin is present on the following networks: Bitcoin, Lightning Network.

The Bitcoin blockchain network uses a consensus mechanism called Proof of Work (PoW) to achieve distributed consensus among its nodes. Here's a detailed breakdown of how it works:

Core Concepts:

- 1. Nodes and Miners:
 - Nodes: Nodes are computers running the Bitcoin software that participate in the network by validating transactions and blocks.
 - Miners: Special nodes, called miners, perform the work of creating new blocks by solving complex cryptographic puzzles.
- 2. Blockchain: The blockchain is a public ledger that records all Bitcoin transactions in a series of blocks. Each block contains a list of transactions, a reference to the previous block (hash), a timestamp, and a nonce (a random number used once).
- 3. Hash Functions: Bitcoin uses the SHA-256 cryptographic hash function to secure the data in blocks. A hash function takes input data and produces a fixed-size string of characters, which appears random.

Consensus Process:

1. Transaction Validation: Transactions are broadcast to the network and collected by miners into a block. Each transaction must be validated by nodes to ensure it follows the network's rules, such as correct signatures and sufficient funds.

- 2. Mining and Block Creation:
 - Nonce and Hash Puzzle: Miners compete to find a nonce that, when combined with the block's data and passed through the SHA-256 hash function, produces a hash that is less than a target value. This target value is adjusted periodically to ensure that blocks are mined approximately every 10 minutes.
 - Proof of Work: The process of finding this nonce is computationally intensive and requires significant energy and resources. Once a miner finds a valid nonce, they broadcast the newly mined block to the network.
- 3. Block Validation and Addition: Other nodes in the network verify the new block to ensure the hash is correct and that all transactions within the block are valid. If the block is valid, nodes add it to their copy of the blockchain and the process starts again with the next block.
- 4. Chain Consensus: The longest chain (the chain with the most accumulated proof of work) is considered the valid chain by the network. Nodes always work to extend the longest valid chain. In the case of multiple valid chains (forks), the network will eventually resolve the fork by continuing to mine and extending one chain until it becomes longer.

For the calculation of the corresponding indicators, the additional energy consumption and the transactions of the Lightning Network have also been taken into account, as this reflects the categorization of the Digital Token Identifier Foundation for the respective functionally fungible group ("FFG") relevant for this reporting. If one would exclude these transactions, the respective estimations regarding the "per transaction" count would be substantially higher.

S.5 Incentive Mechanisms and Applicable Fees

Bitcoin is present on the following networks: Bitcoin, Lightning Network.

The Bitcoin blockchain relies on a Proof-of-Work (PoW) consensus mechanism to ensure the security and integrity of transactions. This mechanism involves economic incentives for miners and a fee structure that supports network sustainability:

Incentive Mechanisms:

- 1. Block Rewards:
 - Newly Minted Bitcoins: Miners are incentivized by block rewards, which consist of newly created bitcoins awarded to the miner who successfully mines a new block. Initially, the block reward was 50 BTC, but it halves every 210,000 blocks (approx. every four years) in an event known as the "halving."
 - Halving and Scarcity: The halving mechanism ensures that the total supply of Bitcoin is capped at 21 million, creating scarcity and potentially increasing value over time.
- 2. Transaction Fees:
 - User Fees: Each transaction includes a fee paid by the user to incentivize miners to include their transaction in a block. These fees are crucial, especially as the block reward diminishes over time due to halving.
 - Fee Market: Transaction fees are determined by the market, where users compete to have their transactions processed quickly. Higher fees typically result in faster inclusion in a block, especially during periods of high network congestion.

For the calculation of the corresponding indicators, the additional energy consumption and the transactions of the Lightning Network have also been taken into account, as this reflects the categorization of the Digital Token Identifier Foundation for the respective functionally fungible group ("FFG") relevant for this reporting. If one would exclude these transactions, the respective estimations regarding the "per transaction" count would be substantially higher

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within which an economic calculation of the miners is assumed. Miners are persons or devices that actively participate in the proof-of-work consensus mechanism. The miners are considered to be the central factor for the energy consumption of the network. Hardware is pre-selected based on the consensus mechanism's hash algorithm: SHA-256. A current profitability threshold is determined on the basis of the revenue and cost structure for mining operations. Only Hardware above the profitability threshold is considered for the network. The energy consumption of the network can be determined by taking into account the distribution for the hardware, the efficiency levels for operating the hardware and on-chain information regarding the miners' revenue opportunities. If significant use of merge mining is known, this is taken into account. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) lightning_network is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is

available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geoinformation is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Dogecoin

0

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Dogecoin	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	8440994855.67905	kWh/a
S.10 Renewable energy consumption	24.1347029759	%
S.11 Energy intensity	0.56498	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	3477656.63425	tCO2e
S.14 GHG intensity	0.23277	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Dogecoin (DOGE) uses a Proof of Work (PoW) consensus mechanism, similar to Bitcoin, but with some key differences.

Core Concepts :

- 1. Nodes and Miners:
 - Nodes: Nodes in the Dogecoin network are computers running the Dogecoin software. They validate transactions, maintain the blockchain, and relay information across the network.
 - Miners: Miners are specialized nodes that solve cryptographic puzzles to create new blocks and validate transactions. This process is known as mining.
- 2. Blockchain: The blockchain is a public ledger that records all Dogecoin transactions in a series of blocks. Each block contains a list of transactions, a reference to the previous block (hash), a timestamp, and a nonce (a random number used once).
- 3. Hash Functions: Dogecoin uses the Scrypt hash function, which is different from Bitcoin's SHA-256. Scrypt is designed to be more memory-intensive, making it more resistant to ASIC

(Application-Specific Integrated Circuit) mining and encouraging more widespread participation by regular users with less powerful hardware.

Consensus Process:

- 1. Transaction Validation: Transactions are broadcast to the network and collected by miners into a block. Each transaction is validated by nodes to ensure it adheres to the network's rules, such as correct signatures and sufficient funds.
- 2. Mining and Block Creation:
 - Nonce and Hash Puzzle: Miners compete to find a nonce that, when combined with the block's data and passed through the Scrypt hash function, produces a hash below a certain target value. This target value is adjusted periodically to maintain a consistent block creation time.
 - Proof of Work: Finding a valid nonce requires significant computational effort. Once a miner finds a valid nonce, the new block is broadcast to the network.
- 3. Block Validation and Addition: Other nodes in the network verify the new block to ensure the hash is correct and that all transactions within the block are valid. If the block is valid, nodes add it to their copy of the blockchain, and the process repeats for the next block.
- 4. Chain Consensus: The longest chain (the chain with the most accumulated proof of work) is considered the valid chain by the network. Nodes always work to extend the longest valid chain. In the case of multiple valid chains (forks), the network will eventually resolve the fork by continuing to mine and extending one chain until it becomes longer.

Security and Economic Incentives:

- 1. Incentives for Miners:
 - Block Rewards: Miners are incentivized to participate in the network by receiving block rewards. Initially, Dogecoin had a variable block reward, but now it offers a fixed reward of 10,000 DOGE per block.
 - Transaction Fees: Miners also collect transaction fees from the transactions included in the block. These fees provide an additional incentive for miners.
- 2. Security:
 - Hash Rate and Difficulty: The security of the Dogecoin network is directly proportional to its hash rate, the total computational power of all miners. A higher hash rate means more difficult and costly attacks.
 - 51% Attack: An attacker would need to control more than 50% of the network's hash rate to double-spend or rewrite parts of the blockchain. The cost and resource requirement for such an attack make it impractical for a sufficiently large and decentralized network like Dogecoin.
- 3. Merged Mining: Dogecoin supports merged mining with Litecoin (LTC). This means miners can mine both Dogecoin and Litecoin simultaneously without additional computational effort. This enhances the security of both networks by pooling their hash rates.

S.5 Incentive Mechanisms and Applicable Fees

Dogecoin uses a Proof of Work (PoW) consensus mechanism to ensure network security and integrity, relying on economic incentives for miners and transaction fees from users.

Incentive Mechanisms

- 1. Miners:
 - Block Rewards: Miners receive block rewards for successfully mining new blocks. Initially, Dogecoin had a variable block reward, but it now offers a fixed reward of 10,000 DOGE per block. These rewards are a primary incentive for miners to invest in the computational power necessary to secure the network.

- Transaction Fees: In addition to block rewards, miners also earn transaction fees from the transactions they include in the blocks they mine. Although Dogecoin's transaction fees are typically low, they still provide an important supplementary income for miners.
- Merged Mining: Dogecoin supports merged mining with Litecoin, allowing miners to simultaneously mine both cryptocurrencies without additional computational effort. This process increases the hash rate and security of both networks by pooling their resources.
- 2. Security:
 - Hash Rate and Difficulty: The security of Dogecoin's network is directly related to its hash rate, the total computational power used by all miners. A higher hash rate makes the network more resistant to attacks. The mining difficulty adjusts periodically to ensure that blocks are mined approximately every minute, maintaining network stability. 51% Attack Deterrence: Controlling more than 50% of the network's hash rate to perform a 51% attack is costly and difficult. The significant computational power and energy required make such attacks impractical for a large and decentralized network like Dogecoin.

Fees Applicable on the Dogecoin Blockchain:

- 1. Transaction Fees:
 - Flat Fee Structure: Dogecoin uses a relatively simple fee structure. The typical transaction fee is 1 DOGE per kilobyte of transaction data. This low fee is one of Dogecoin's appeals, making it suitable for small and micro-transactions.
 - Incentives for Faster Processing: Although transaction fees are generally low, users can choose to pay higher fees to incentivize miners to include their transactions in the next block, ensuring faster processing times.
- 2. Mining Rewards:
 - Block Subsidy: The fixed block reward of 10,000 DOGE incentivizes miners to continue securing the network. This reward will persist as Dogecoin does not have a maximum supply cap, ensuring continuous incentives for miners.
 - Fee Inclusion: Besides the block subsidy, the inclusion of transaction fees provides an additional, albeit smaller, incentive for miners to process transactions efficiently.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within which an economic calculation of the miners is assumed. Miners are persons or devices that actively participate in the proof-of-work consensus mechanism. The miners are considered to be the central factor for the energy consumption of the network. Hardware is pre-selected based on the consensus mechanism's hash algorithm: Scrypt. A current profitability threshold is determined on the basis of the revenue and cost structure for mining operations. Only Hardware above the profitability threshold is considered for the network. The energy consumption of the network can be determined by taking into account the distribution for the hardware, the efficiency levels for operating the hardware and on-chain information regarding the miners' revenue opportunities. If significant use of merge mining is known, this is taken into account. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Litecoin

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Litecoin	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1113312013.64960	kWh/a
S.10 Renewable energy consumption	24.1347029759	%
S.11 Energy intensity	0.04655	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	458680.16466	tCO2e
S.14 GHG intensity	0.01918	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Litecoin, like Bitcoin, uses Proof of Work (PoW) as its consensus mechanism, but with a few key differences:

- 1. Scrypt Hashing Algorithm: Unlike Bitcoin's SHA-256 algorithm, Litecoin uses the Scrypt hashing algorithm, which is more memory-intensive. This makes mining Litecoin more accessible to regular users and limits the advantages of specialized hardware (like ASICs) in the early years.
- 2. Mining and Block Creation: Miners compete to solve cryptographic puzzles and, upon success, add new blocks to the blockchain. This process involves solving the Scrypt algorithm, which requires computational work. The first miner to solve the problem earns the block reward and transaction fees associated with the transactions in the block.
- 3. Block Time: Litecoin has a block time of 2.5 minutes, much faster than Bitcoin's 10 minutes. This means transactions confirm more quickly, increasing the overall network speed.
- 4. Block Reward Halving: Similar to Bitcoin, Litecoin has a block reward halving event approximately every four years. Initially, miners earned 50 LTC per block, but this reward decreases by half after each halving event. This process continues until the maximum supply of 84 million LTC is reached.
- 5. Difficulty Adjustment: Litecoin adjusts the mining difficulty approximately every 2,016 blocks (about every 3.5 days) to ensure that blocks continue to be mined at a consistent rate of 2.5 minutes per block, regardless of fluctuations in the total network hash rate.

S.5 Incentive Mechanisms and Applicable Fees

Litecoin, like Bitcoin, uses the Proof of Work (PoW) consensus mechanism to secure transactions and incentivize miners.

Incentive Mechanisms:

1. Mining Rewards:

Block Rewards: Miners are rewarded with Litecoin (LTC) for successfully mining new blocks. Initially, miners received 50 LTC per block, but this reward halves approximately every four years. Transaction Fees: Miners also earn transaction fees from the transactions included in the blocks they mine. Users pay fees to have their transactions processed by miners, especially when they need faster confirmation times.

- 2. Halving:
 - The halving mechanism ensures that over time, fewer Litecoins are introduced into circulation, creating a deflationary model. This makes mining more valuable as the circulating supply becomes scarcer, incentivizing miners to continue participating in the network even as block rewards decrease.
- 3. Economic Security:

The cost of mining (e.g., hardware and electricity) provides a strong economic incentive for miners to act honestly. If miners attempt to cheat or attack the network, they risk losing the computational work they invested, as invalid blocks will be rejected by the network.

Fees on the Litecoin Blockchain:

- Transaction Fees: Litecoin users pay a transaction fee for each transaction, typically calculated in LTC per byte of transaction data. The fees are dynamic and vary based on network congestion.
- Low Fees: Litecoin is known for its relatively low transaction fees compared to other blockchains like Bitcoin, which makes it ideal for smaller transactions and micro-payments.

- Fee Redistribution: Collected transaction fees are distributed to miners as part of their rewards for validating transactions and securing the network.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within which an economic calculation of the miners is assumed. Miners are persons or devices that actively participate in the proof-of-work consensus mechanism. The miners are considered to be the central factor for the energy consumption of the network. Hardware is pre-selected based on the consensus mechanism's hash algorithm: Scrypt. A current profitability threshold is determined on the basis of the revenue and cost structure for mining operations. Only Hardware above the profitability threshold is considered for the network. The energy consumption of the network can be determined by taking into account the distribution for the hardware, the efficiency levels for operating the hardware and on-chain information regarding the miners' revenue opportunities. If significant use of merge mining is known, this is taken into account. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Ethereum Classic Ether

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Ethereum Classic Ether	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	811024149.16444	kWh/a
S.10 Renewable energy consumption	24.1347029759	%
S.11 Energy intensity	0.04656	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	334138.75510	tCO2e
S.14 GHG intensity	0.01918	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Ethereum Classic operates on a Proof of Work (PoW) consensus mechanism with the Etchash algorithm, which is a modified version of Ethash. This PoW model requires computational work from miners to validate transactions and secure the network.

Core Components:

- Proof of Work with Etchash Mining and Security: Miners use computational resources to perform the work necessary to add blocks to the blockchain, ensuring network security and resistance to tampering.
- Code is Law Philosophy Immutable Ledger: Following the 2016 DAO hack, Ethereum Classic upheld the "Code is Law" principle by retaining the unaltered blockchain. This commitment to immutability sets Ethereum Classic apart, preserving its original ledger without reverting transactions.

S.5 Incentive Mechanisms and Applicable Fees

Ethereum Classic's incentive model combines block rewards and transaction fees, encouraging miner participation and network security.

Incentive Mechanisms:

- 1. Block Rewards:
 - Deflationary Supply Model: Miners receive ETC through block rewards, which decrease over time, similar to Bitcoin's model. This deflationary design supports ETC's value retention and incentivizes continued mining efforts.

2. Transaction Fees:

User-Paid Fees: Users pay fees in ETC for sending transactions, interacting with smart contracts, and utilizing dApps. These fees provide miners with additional income and help maintain network security.

Applicable Fees: Ethereum Classic's fee structure involves user-paid transaction fees to support network operations and discourage spam transactions.

- 1. Transaction Fees:
 - User-Paid Fees: Every transaction on Ethereum Classic incurs a fee in ETC, based on the computational effort required. These fees ensure that resources are efficiently used and contribute to miner revenue.
 - Dynamic Demand-Based Fees: Fees vary according to transaction complexity and network demand, helping maintain transaction efficiency and preventing congestion.
- 2. Mining Rewards:
 - Block Rewards Reduction: Block rewards, which are scheduled to reduce over time, provide a primary income source for miners. This model aims to balance network security while managing ETC's supply.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within which an economic calculation of the miners is assumed. Miners are persons or devices that actively participate in the proof-of-work consensus mechanism. The miners are considered to be the central factor for the energy consumption of the network. Hardware is pre-selected based on the consensus mechanism's hash algorithm: Etchash. A current profitability threshold is determined on the basis of the revenue and cost structure for mining operations. Only Hardware above the profitability threshold is considered for the network. The energy consumption of the network can be determined by taking into account the distribution for the hardware, the efficiency levels for operating the hardware and on-chain information regarding the miners' revenue opportunities. If significant use of merge mining is known, this is taken into account. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute,

"Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Bitcoin Cash

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Bitcoin Cash	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	664070647.99311	kWh/a
S.10 Renewable energy consumption	24.1347029759	%
S.11 Energy intensity	0.08807	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	273594.49142	tCO2e
S.14 GHG intensity	0.03628	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Bitcoin Cash is present on the following networks: Bitcoin Cash, Smart Bitcoin Cash.

The Bitcoin Cash blockchain network uses a consensus mechanism called Proof of Work (PoW) to achieve distributed consensus among its nodes. It originated from the Bitcoin blockchain, hence has the same consensus mechanisms but with a larger block size, which makes it more centralized.

Core Concepts:

- 1. Nodes and Miners:
 - Nodes: Nodes are computers running the Bitcoin Cash software that participate in the network by validating transactions and blocks.
 - Miners: Special nodes, called miners, perform the work of creating new blocks by solving complex cryptographic puzzles.
- 2. Blockchain: The blockchain is a public ledger that records all Bitcoin Cash transactions in a series of blocks. Each block contains a list of transactions, a reference to the previous block (hash), a timestamp, and a nonce (a random number used once).
- 3. Hash Functions: Bitcoin Cash uses the SHA-256 cryptographic hash function to secure the data in blocks. A hash function takes input data and produces a fixed-size string of characters, which appears random.

Consensus Process:

- 1. Transaction Validation: Transactions are broadcast to the network and collected by miners into a block. Each transaction must be validated by nodes to ensure it follows the network's rules, such as correct signatures and sufficient funds.
- 2. Mining and Block Creation:
 - Nonce and Hash Puzzle: Miners compete to find a nonce that, when combined with the block's data and passed through the SHA-256 hash function, produces a hash that is less than a target value. This target value is adjusted periodically to ensure that blocks are mined approximately every 10 minutes.
 - Proof of Work: The process of finding this nonce is computationally intensive and requires significant energy and resources. Once a miner finds a valid nonce, they broadcast the newly mined block to the network.
- 3. Block Validation and Addition:
 - Other nodes in the network verify the new block to ensure the hash is correct and that all transactions within the block are valid.
 - If the block is valid, nodes add it to their copy of the blockchain and the process starts again with the next block.
- 4. Chain Consensus:
 - The longest chain (the chain with the most accumulated proof of work) is considered the valid chain by the network. Nodes always work to extend the longest valid chain.
 - In the case of multiple valid chains (forks), the network will eventually resolve the fork by continuing to mine and extending one chain until it becomes longer.

Smart Bitcoin Cash (SmartBCH) operates as a sidechain to Bitcoin Cash (BCH), leveraging a hybrid consensus mechanism combining Proof of Work (PoW) compatibility and validator-based validation.

Core Components:

- Proof of Work Compatibility: SmartBCH relies on Bitcoin Cash's PoW for settlement and security, ensuring robust integration with BCH's main chain. SHA-256 Algorithm: Uses the same SHA-256 hashing algorithm as Bitcoin Cash, allowing compatibility with existing mining hardware and infrastructure.
- Consensus via Validators: Transactions within SmartBCH are validated by a set of validators chosen based on staking and operational efficiency. This hybrid approach combines the hash power of PoW with a validator-based model to enhance scalability and flexibility.

S.5 Incentive Mechanisms and Applicable Fees

Bitcoin Cash is present on the following networks: Bitcoin Cash, Smart Bitcoin Cash.

The Bitcoin Cash blockchain operates on a Proof-of-Work (PoW) consensus mechanism, with incentives and fee structures designed to support miners and the overall network's sustainability:

Incentive Mechanism:

- 1. Block Rewards:
 - Newly Minted Bitcoins: Miners receive a block reward, which consists of newly created bitcoins for successfully mining a new block. Initially, the reward was 50 BCH, but it halves approximately every four years in an event known as the "halving."
 - Halving and Scarcity: The halving ensures that the total supply of Bitcoin Cash is capped at 21 million BCH, creating scarcity that could drive up value over time.
- 2. Transaction Fees:
 - User Fees: Each transaction includes a fee, paid by users, that incentivizes miners to include the transaction in a new block. This fee market becomes increasingly important as block rewards decrease over time due to the halving events.
 - Fee Market: Transaction fees are market-driven, with users competing to get their transactions included quickly. Higher fees lead to faster transaction processing, especially during periods of high network congestion.

Applicable Fees:

- 1. Transaction Fees:
 - Bitcoin Cash transactions require a small fee, paid in BCH, which is determined by the transaction's size and the network demand at the time. These fees are crucial for the continued operation of the network, particularly as block rewards decrease over time due to halvings.
- 2. Fee Structure During High Demand:
 - In times of high congestion, users may choose to increase their transaction fees to prioritize their transactions for faster processing. The fee structure ensures that miners are incentivized to prioritize higher-fee transactions.

SmartBCH's incentive model encourages validators and network participants to secure the sidechain and process transactions efficiently.

Incentive Mechanisms:

- Validator Rewards: Validators are rewarded with a share of transaction fees for their role in validating transactions and maintaining the network.
- Economic Alignment: The system incentivizes validators to act in the network's best interest, ensuring stability and fostering adoption through economic alignment.

Applicable Fees:

Transaction Fees: Fees for transactions on SmartBCH are paid in BCH, ensuring seamless integration with the Bitcoin Cash ecosystem.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within which an economic calculation of the miners is assumed. Miners are persons or devices that actively participate in the proof-of-work consensus mechanism. The miners are considered to be the central factor for the energy consumption of the network. Hardware is pre-selected based on the consensus mechanism's hash algorithm: SHA-256. A current profitability threshold is determined on

the basis of the revenue and cost structure for mining operations. Only Hardware above the profitability threshold is considered for the network. The energy consumption of the network can be determined by taking into account the distribution for the hardware, the efficiency levels for operating the hardware and on-chain information regarding the miners' revenue opportunities. If significant use of merge mining is known, this is taken into account. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Zcash

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Zcash	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	322297378.34888	kWh/a
S.10 Renewable energy consumption	24.1347029910	%
S.11 Energy intensity	12.76390	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	132785.25042	tCO2e
S.14 GHG intensity	5.25868	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Zcash is present on the following networks: Binance Smart Chain, Zcash.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently

active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process

- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

Zcash operates on a Proof of Work (PoW) consensus mechanism, using the Equihash algorithm, which requires miners to dedicate computational power to validate transactions and produce new blocks.

Core Components:

- 1. Equihash PoW: Mining Process:
 - Miners compete to add new blocks by investing computational resources. This work serves as proof that miners are actively contributing to network security.
- 2. zk-SNARKs Integration:
 - Zcash utilizes zk-SNARKs (Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge) to enable privacy-focused transactions. This cryptographic proof mechanism allows transactions to be verified without revealing sensitive information, such as the sender, recipient, or amount.

S.5 Incentive Mechanisms and Applicable Fees

Zcash is present on the following networks: Binance Smart Chain, Zcash.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

Zcash incentivizes miners through block rewards and transaction fees, supporting both network security and operational efficiency.

Incentive Mechanisms:

- 1. Block Rewards: Miners receive ZEC as a reward for creating blocks, encouraging ongoing network support and computational investment.
- 2. Transaction Fees: Users pay transaction fees in ZEC for processing transactions, which miners receive in addition to block rewards.

Applicable Fees:

Enhanced Privacy and Shielded Transactions:

zk-SNARKs Efficiency: While shielded transactions offer privacy, they require more computational resources, which may slightly increase fees. Upgrades like Halo aim to enhance the efficiency of zk-SNARKs, keeping shielded transaction costs manageable.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within which an economic calculation of the miners is assumed. Miners are persons or devices that actively participate in the proof-of-work consensus mechanism. The miners are considered to be the central factor for the energy consumption of the network. Hardware is pre-selected based on the consensus mechanism's hash algorithm: Equihash. A current profitability threshold is determined on the basis of the revenue and cost structure for mining operations. Only Hardware above the profitability threshold is considered for the network. The energy consumption of the network can be determined by taking into account the distribution for the hardware, the efficiency levels for operating the hardware and on-chain information regarding the miners' revenue opportunities. If significant use of merge mining is known, this is taken into account. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute,

"Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Core

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Core	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	146642047.30988	kWh/a
S.10 Renewable energy consumption	24.1347029759	%
S.11 Energy intensity	0.06480	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	60415.94592	tCO2e
S.14 GHG intensity	0.02670	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Core employs the Satoshi Plus consensus mechanism, which combines Delegated Proof of Work (DPoW), Delegated Proof of Stake (DPoS), and Non-Custodial Bitcoin Staking to provide robust security and scalability.

Core Components:

- Delegated Proof of Work (DPoW):

Integrates Bitcoin miners into the network by allowing them to contribute hash power to secure Core, without interfering with Bitcoin's primary operations.

- Delegated Proof of Stake (DPoS):

CORE token holders delegate their tokens to validators who handle block production and transaction validation, ensuring efficiency and decentralization.

Non-Custodial Bitcoin Staking:

Bitcoin holders can stake their BTC to participate in the network consensus, adding an extra layer of security while preserving ownership of their assets.

S.5 Incentive Mechanisms and Applicable Fees

Core incentivizes network participation through staking rewards, transaction fees, and governance opportunities.

Incentive Mechanisms:

Validator Rewards:

Validators earn rewards from transaction fees and newly minted CORE tokens distributed through the blockchain's inflation policy, with payouts proportional to their delegated hash power and CORE stake.

Staking Incentives:

Both CORE and Bitcoin stakers receive rewards for contributing to network security and stability, encouraging broader participation across asset classes.

Governance Participation:

CORE token holders have voting rights, allowing them to influence protocol upgrades and network parameters, supporting decentralized decision-making.

Applicable Fees:

Transaction Fees:

Users pay transaction fees in CORE tokens for executing transactions and smart contracts. These fees are distributed to validators as compensation for securing the network.

Inflation Policy:

A portion of validator rewards comes from newly minted CORE tokens, providing an additional incentive while maintaining a controlled inflation model.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are

assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

eCash

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	eCash	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	47967756.39288	kWh/a
S.10 Renewable energy consumption	24.1347029997	%
S.11 Energy intensity	5.45564	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e

Field	Value	Unit
S.13 Scope 2 DLT GHG emission - Purchased	19762.52670	tCO2e
S.14 GHG intensity	2.24770	kgCO2e

Qualitative information

S.4 Consensus Mechanism

eCash is present on the following networks: Binance Smart Chain, Ecash.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

eCash utilizes a hybrid consensus model combining Proof of Work (PoW) with the Avalanche Post-Consensus protocol, enhancing transaction finality and security.

Core Components:

- 1. Proof of Work with Avalanche Post-Consensus:
- Dual-Layer Security: Blocks are initially mined through PoW, and then finalized with Avalanche, providing rapid finality and preventing block reversals.
- 2. ASERT Difficulty Adjustment:
 - Consistent Block Times: ASERT adjusts mining difficulty in real-time to maintain a 10-minute block interval, even with fluctuating network hashrate.
- 3. Staking for Governance:

Staking Participation: XEC holders can lock tokens to participate in governance and earn rewards, adding stability and engaging the community in the consensus process.

S.5 Incentive Mechanisms and Applicable Fees

eCash is present on the following networks: Binance Smart Chain, Ecash.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

eCash incentivizes miners and stakeholders through block rewards, transaction fees, and staking rewards, supporting network security, engagement, and governance.

Incentive Mechanisms:

1. Block Rewards for Miners:

XEC Rewards: Miners earn block rewards in XEC, with periodic halving events to manage supply and encourage token scarcity over time.

- 2. Staking Rewards for XEC Holders:
 - Passive Income for Stakers: XEC holders who lock their tokens receive rewards, promoting active governance participation and network stability.

Applicable Fees:

User-Paid Fees in XEC: Transaction fees are paid in XEC, awarded to miners as additional compensation, and are kept low to encourage everyday use and microtransactions.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based

on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Stacks

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Stacks	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	9772097.35375	kWh/a
S.10 Renewable energy consumption	24.1347029759	%
S.11 Energy intensity	0.01539	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	4026.06562	tCO2e
S.14 GHG intensity	0.00634	kgCO2e

Qualitative information

S.4 Consensus Mechanism

The Stacks blockchain, a Layer 2 solution on top of Bitcoin, uses a unique consensus mechanism called Proof of Transfer (PoX). PoX is inspired by Bitcoin's Proof of Work (PoW) and leverages Bitcoin's security by anchoring Stacks transactions on the Bitcoin blockchain.

Core Concepts of Proof of Transfer (PoX):

- 1. Recycling Bitcoin's Security:
 - Stacks utilizes Bitcoin's hash power and PoW energy by requiring Stacks miners to transfer BTC in exchange for the native token STX, essentially "recycling" Bitcoin's energy without additional mining.
 - Transactions on Stacks achieve Bitcoin finality—they are secured by Bitcoin's immutable blockchain.
- 2. Two-Layered Peg Mechanism:

Stacks introduces a decentralized, trust-minimized peg called sBTC, allowing assets to move between Bitcoin and Stacks. b. This peg enables Stacks smart contracts to interact with Bitcoin securely and in a decentralized way, enhancing utility and enabling DeFi on Bitcoin.

3. Smart Contracts with Clarity Language:

Stacks supports Clarity, a smart contract language designed for predictability and safety. Clarity contracts allow developers to know exactly what a contract will do before execution, ensuring security.

4. Miners and Stakers:

Miners transfer BTC to earn newly minted STX, securing the network. b. STX Holders (stakers) are incentivized to lock up STX tokens, earning BTC rewards in return.

S.5 Incentive Mechanisms and Applicable Fees

The Stacks network incentivizes secure transactions and network participation through its unique Proof of Transfer (PoX) consensus model, which integrates incentives for both miners and STX holders.

Incentive Mechanisms to Secure Transactions:

- 1. Miners' Incentives:
 - BTC Transfers for Block Rewards: Stacks miners secure the network by transferring Bitcoin (BTC) to compete for the opportunity to mine a new block and earn STX rewards. This transfer of BTC ensures miners are vested in the network's security without directly consuming additional computational power.
 - Newly Minted STX Rewards: Miners who successfully mine a block are rewarded with newly minted STX tokens. This reward incentivizes miners to continue participating in securing the Stacks network.
 - Bitcoin Finality: Since Stacks blocks are anchored to Bitcoin, the network leverages Bitcoin's security to ensure finality, meaning that once transactions are confirmed on Bitcoin, they are considered immutable and secure.
- 2. Incentives for STX Holders (Stacking Rewards):
 - Stacking BTC Rewards: STX holders can participate in the consensus process through a mechanism called Stacking. By locking up (temporarily holding) their STX tokens, these participants contribute to network stability and security. In return, they receive BTC rewards paid by the miners.
 - Decentralization and Security Contribution: The Stacking process promotes decentralization by encouraging broad participation from STX holders, who help maintain network stability and security. This model reduces reliance on a few large players and provides economic rewards for active participation.
- 3. Two-Layered Peg and Decentralized Utility:
 - By utilizing a two-way peg mechanism, the Stacks network allows BTC to be moved between Bitcoin and Stacks, enabling secure, decentralized transactions. This enhances the overall utility of the network, encouraging more users and developers to participate in the ecosystem.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Solana SOL

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Solana SOL	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	6244785.00000	kWh/a
S.10 Renewable energy consumption	27.0081797971	%
S.11 Energy intensity	0.00000	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	2116.16462	tCO2e
S.14 GHG intensity	0.00000	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:
 - Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geoinformation is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Internet Computer Token

 ∞

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Internet Computer Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	5834160.00000	kWh/a
S.10 Renewable energy consumption	25.130000000	%
S.11 Energy intensity	0.00720	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	2047.79016	tCO2e
S.14 GHG intensity	0.00253	kgCO2e

Qualitative information

S.4 Consensus Mechanism

The Internet Computer Protocol (ICP) uses a unique consensus mechanism called Threshold Relay combined with Chain Key Technology to ensure decentralized, scalable, and secure operations for its network.

Core Components of ICP's Consensus Mechanism:

- 1. Threshold Relay:
 - Threshold Relay is a consensus protocol that enables the network to achieve finality without a traditional Proof-of-Work or Proof-of-Stake mechanism. It leverages a group of nodes called "the committee" to generate a random beacon that is used for the selection of the next block producer. The protocol is designed to provide scalability and speed while maintaining decentralization by allowing any node to join the consensus process. The key feature of Threshold Relay is that it utilizes a threshold signature scheme, where a group of nodes must collaborate to create a valid signature, ensuring that consensus is achieved even in the presence of faulty or malicious nodes.
- 2. Chain Key Technology:
 - Chain Key Technology is used to manage the state of the Internet Computer, allowing it to scale effectively across a vast number of nodes while still providing fast and secure transaction finality. This technology enables the creation and management of many independent blockchains (also known as subnet blockchains), each with its own set of validators. Chain Key Technology allows the Internet Computer to support billions of smart contracts without compromising speed, as it facilitates quick communication between the subnets and enables cross-chain interoperability.
- 3. Canister Smart Contracts:
 - The Internet Computer utilizes a decentralized model where the computation of canister smart contracts (which hold the application logic) occurs across different nodes in the network. These canisters can run autonomously and scale with the network's growth.
 - Finality and Security: The consensus mechanism ensures finality once a transaction is validated, meaning that once a block is added, it cannot be reverted, providing the security required for

high-stakes applications. The use of Threshold Relay provides robust Byzantine Fault Tolerance (BFT), enabling the network to tolerate faulty or malicious behavior without compromising network integrity.

S.5 Incentive Mechanisms and Applicable Fees

The Internet Computer Protocol (ICP) incentivizes network participants (validators, node operators, and canister developers) through various reward mechanisms and transaction fees. Here's a breakdown of the incentive mechanisms and applicable fees related to ICP:

Incentive Mechanism:

- 1. Network Participation and Rewards:
 - Validators: Validators are crucial for maintaining the integrity and security of the network. They stake ICP tokens to participate in consensus and are rewarded for validating blocks, maintaining the integrity of the decentralized network, and ensuring its performance. Rewards for validators are based on their participation in the consensus mechanism and their stake in the network.
 - Node Operators: Node operators who maintain the physical infrastructure of the network (such as hardware and server resources) are also rewarded. These operators run the nodes that participate in the Threshold Relay and provide computational power to the network.
- 2. Canister Developers and Network Participants:
 - Canister Smart Contracts: Developers of canisters (smart contracts) on the Internet Computer are incentivized through the creation of decentralized applications (dApps). Developers may also benefit from transaction fees generated by the usage of their dApps and the deployment of smart contracts on the network.
 - Usage Fees: Users of decentralized applications (dApps) or canisters are incentivized to pay for their usage through fees. These fees are often paid in ICP tokens, and developers can receive a share of these fees based on the usage of their deployed applications.
- 3. Governance:
 - The ICP Token is used for governance via the Network Nervous System (NNS), where holders of ICP tokens participate in decisions regarding the protocol, such as network upgrades, incentive adjustments, and the allocation of funds. Token holders are rewarded with the ability to influence the future of the network.
- 4. Staking Rewards:
 - Staking: ICP token holders can participate in staking their tokens in the NNS, which influences network consensus and governance. By participating in staking, they help secure the network and are rewarded with staking rewards (a form of passive income). The staking rewards are given to token holders who participate in securing the network via the NNS.

Applicable Fees:

- 1. Transaction Fees:
 - Canister Calls: Every interaction with a canister (smart contract) on the Internet Computer incurs a transaction fee. These fees are typically paid in ICP tokens and are used to cover the computational resources required to process requests, store data, and manage execution.
 - Fee Structure: Transaction fees depend on the complexity and resources consumed by the canister call or network operation. For example, operations that require more computational power or data storage may incur higher fees.
- 2. Storage Fees:
 - Canister Data Storage: Developers and users who deploy applications on the Internet Computer are required to pay fees for storing data. These fees ensure that network resources are used efficiently and that canisters do not waste storage space. The cost of storage is typically paid in ICP tokens.

- 3. Governance Participation Fees:
 - Voting and Proposal Fees: Participation in the governance process via the NNS (Network Nervous System) may require a small fee, depending on the type of governance action (such as submitting a proposal or voting). These fees ensure that governance is distributed and prevent spam attacks on the governance system.
- 4. Node and Validator Fees:
 - Fees for Node Operations: Node operators who provide computational power to the network may incur costs related to maintaining hardware and operating nodes. These fees are partially offset by rewards for providing network resources.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) internet_computer is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute,

"Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Verge

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Verge	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	5039684.67583	kWh/a
S.10 Renewable energy consumption	24.1347300109	%
S.11 Energy intensity	5.06899	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	2076.32575	tCO2e
S.14 GHG intensity	2.08840	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Verge is present on the following networks: Ethereum, Verge.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Verge secures its network with a multi-algorithm Proof of Work (PoW) consensus mechanism, which supports five different hashing algorithms, allowing for greater hardware compatibility and enhancing decentralization.

Core Components:

Multi-Algorithm Proof of Work:

- Hashing Diversity: Verge utilizes five algorithms—Scrypt, X17, Lyra2REv2, myr-groestl, and blake2s—allowing miners with various hardware types to participate. This flexibility makes the network more accessible and decentralized.
- Competitive Mining Environment: PoW mining requires computational power to validate transactions and produce new blocks, ensuring that block production is secure and decentralized.

S.5 Incentive Mechanisms and Applicable Fees

Verge is present on the following networks: Ethereum, Verge.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Verge incentivizes network participation through mining rewards and maintains a low-fee structure, making it well-suited for frequent, microtransactional usage.

Incentive Mechanisms:

1. Mining Rewards:

XVG Block Rewards: Miners are rewarded in XVG tokens for validating transactions and adding new blocks to the network, with rewards distributed across the five supported algorithms. This structure incentivizes miners to contribute to network security.

2. Deflationary Supply Model:

Fixed Supply Cap: Verge has a maximum supply of 16.5 billion XVG tokens. Once this cap is reached, no new tokens will be issued through block rewards, making Verge a deflationary asset designed to retain value.

Applicable Fees:

Low Transaction Fees: Cost-Effective Transactions: Verge's low transaction fees, paid in XVG, make it ideal for microtransactions and high-frequency transfers, encouraging everyday use across various applications.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within which an economic calculation of the miners is assumed. Miners are persons or devices that actively participate in the proof-of-work consensus mechanism. The miners are considered to be the central factor for the energy consumption of the network. Hardware is pre-selected based on the consensus mechanism's hash algorithm: None. A current profitability threshold is determined on the basis of the revenue and cost structure for mining operations. Only Hardware above the profitability threshold is considered for the network. The energy consumption of the network can be determined by taking into account the distribution for the hardware, the efficiency levels for operating the hardware and on-chain information regarding the miners' revenue opportunities. If significant use of merge mining is known, this is taken into account. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute,

"Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

TRON TRX

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	TRON TRX	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	3892170.49076	kWh/a
S.10 Renewable energy consumption	23.380000000	%
S.11 Energy intensity	0.00003	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	1529.62300	tCO2e
S.14 GHG intensity	0.00001	kgCO2e

Qualitative information

S.4 Consensus Mechanism

The Tron blockchain operates on a Delegated Proof of Stake (DPoS) consensus mechanism, designed to improve scalability, transaction speed, and energy efficiency.

Core Components:

1. Delegated Proof of Stake (DPoS): Tron uses DPoS, where token holders vote for a group of delegates known as Super Representatives (SRs)who are responsible for validating transactions and producing new blocks on the network. Token holders can vote for SRs based on their stake in

the Tron network, and the top 27 SRs (or more, depending on the protocol version) are selected to participate in the block production process. SRs take turns producing blocks, which are added to the blockchain. This is done on a rotational basis to ensure decentralization and prevent control by a small group of validators.

- 2. Block Production: The Super Representatives generate new blocks and confirm transactions. The Tron blockchain achieves block finality quickly, with block production occurring every 3 seconds, making it highly efficient and capable of processing thousands of transactions per second.
- 3. Voting and Governance: Tron's DPoS system also allows token holders to vote on important network decisions, such as protocol upgrades and changes to the system's parameters. Voting power is proportional to the amount of TRX (Tron's native token) that a user holds and chooses to stake. This provides a governance system where the community can actively participate in decision-making.
- 4. Super Representatives: The Super Representatives play a crucial role in maintaining the security and stability of the Tron blockchain. They are responsible for validating transactions, proposing new blocks, and ensuring the overall functionality of the network. Super Representatives are incentivized with block rewards (newly minted TRX tokens) and transaction feesfor their work.

S.5 Incentive Mechanisms and Applicable Fees

The Tron blockchain uses a Delegated Proof of Stake (DPoS) consensus mechanism to secure its network and incentivize participation.

Incentive Mechanism:

- 1. Super Representatives (SRs) Rewards:
 - Block Rewards: Super Representatives (SRs), who are elected by TRX holders, are rewarded for producing blocks. Each block they produce comes with a block reward in the form of TRX tokens.
 - Transaction Fees: In addition to block rewards, SRs receive transaction fees for validating transactions and including them in blocks. This ensures they are incentivized to process transactions efficiently.
- 2. Voting and Delegation:
 - TRX Staking: TRX holders can stake their tokens and vote for Super Representatives (SRs). When TRX holders vote, they delegate their voting power to SRs, which allows SRs to earn rewards in the form of newly minted TRX tokens.
 - Delegator Rewards: Token holders who delegate their votes to an SR can also receive a share of the rewards. This means delegators share in the block rewards and transaction fees that the SR earns.
 - Incentivizing Participation: The more tokens a user stakes, the more voting power they have, which encourages participation in governance and network security.
- 3. Incentive for SRs:
 - SRs are also incentivized to maintain the health and performance of the network. Their reputation and continued election depend on their ability to produce blocks consistently and efficiently process transactions.

Applicable Fees:

- 1. Transaction Fees:
 - Fee Calculation: Users must pay transaction fees to have their transactions processed. The transaction fee varies based on the complexity of the transaction and the network's current demand. This is paid in TRX tokens. Transaction
 - Fee Distribution: Transaction fees are distributed to Super Representatives (SRs), giving them an ongoing income to maintain and support the network.

2. Storage Fees:

Tron charges storage fees for data storage on the blockchain. This includes storing smart contracts, tokens, and other data on the network. Users are required to pay these fees in TRX tokens to store data.

3. Energy and Bandwidth:

Energy: Tron uses a resource model that allows users to access network resources like bandwidth and energy through staking. Users who stake their TRX tokens receive \energy

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) tron is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Filecoin

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Filecoin	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	2409025.71993	kWh/a
S.10 Renewable energy consumption	26.5386910586	%
S.11 Energy intensity	0.00140	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	801.75599	tCO2e
S.14 GHG intensity	0.00047	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Filecoin is present on the following networks: Binance Smart Chain, Filecoin, Huobi.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an

entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.

- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

Filecoin's consensus mechanism, Expected Consensus (EC), is designed to reward data storage providers based on the amount of storage they contribute.

Core Components of Expected Consensus (EC):

- 1. Storage Power-Based Block Production:
 - Probabilistic Block Selection: Block producers (miners) are chosen probabilistically based on their storage power, meaning providers with more storage capacity have higher chances of being selected to produce new blocks.
- 2. Proof of Replication (PoRep): Initial Data Verification: Miners provide cryptographic Proof of Replication to verify they are

uniquely storing clients' data at the start of each storage contract.

3. Proof of Spacetime (PoSt):

Ongoing Verification: Miners periodically submit Proof of Spacetime to confirm they continue to store data over the contract's duration, maintaining data availability and integrity.

- 4. Chain Quality and Fork Choice:
 - Chain Quality Rule: In cases of chain splits, the network follows the chain with the highest cumulative storage power, ensuring security by selecting the most robust chain.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and scalability.

Key Features of HECO's Consensus Mechanism:

- 1. Validator Selection: HECO supports up to 21 validators, selected based on their stake in the network.
- 2. Transaction Processing: Validators are responsible for processing transactions and adding blocks to the blockchain.
- 3. Transaction Finality: The consensus mechanism ensures quick finality, allowing for rapid confirmation of transactions.
- 4. Energy Efficiency: By utilizing PoS elements, HECO reduces energy consumption compared to traditional Proof-of-Work systems.

S.5 Incentive Mechanisms and Applicable Fees

Filecoin is present on the following networks: Binance Smart Chain, Filecoin, Huobi.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

Filecoin incentivizes storage providers (miners) to maintain data integrity and make decentralized storage available through block rewards and storage fees.

Incentive Mechanisms:

- 1. Block Rewards:
 - Storage-Based Block Rewards: Block rewards in FIL (Filecoin's native token) are given to storage providers selected to add new blocks, proportional to their storage power. These rewards incentivize providers to contribute more storage to the network, enhancing security and decentralized data availability.
 - Reward Distribution: Providers with higher storage capacity receive rewards more frequently, creating a direct economic incentive to offer larger storage volumes.
- 2. Storage Fees:
 - Client Payments: Clients pay storage providers (miners) in FIL tokens to store data, incentivizing providers to offer reliable storage.
 - Market Pricing: Storage costs are determined by supply and demand, allowing competitive, flexible pricing based on network conditions.
- 3. Data Retrieval Payments:
 - In addition to storage fees, miners can earn retrieval fees for providing data access to clients. These fees incentivize storage providers to make stored data readily accessible, enabling Filecoin to support efficient, decentralized data retrieval services.
- 4. Slashing and Penalties:
 - If a miner fails to provide Proof of Spacetime, they may face slashing penalties, losing a portion of their FIL collateral. This mechanism disincentivizes data tampering or deletion by holding providers accountable to their storage commitments.
 - Client Refunds: In cases of missed proofs, clients may receive refunds or compensations, ensuring that the network maintains a high standard of data reliability and provider accountability.

Applicable Fees:

- 1. Transaction Fees:
 - Filecoin charges transaction fees for standard network operations, paid in FIL. These fees help maintain network functionality and discourage spam by aligning costs with network resource usage.

2. Gas Fees:

Miners pay gas fees based on the computational resources required to submit PoRep and PoSt proofs. These fees are integral to the network's operation, ensuring that participants contribute fairly to Filecoin's resource demands.

3. Storage and Retrieval Fees:

Clients pay miners for data storage on a contract basis, and retrieval fees are paid when miners deliver data on request. These fees are tailored to the type and duration of storage services, providing flexibility in data pricing and availability.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and scalability.

Incentive Mechanism:

1. Validator Rewards:

Validators are selected based on their stake in the network. They process transactions and add blocks to the blockchain. Validators receive rewards in the form of transaction fees for their role in maintaining the blockchain's integrity.

2. Staking Participation:

Users can stake Huobi Token (HT) to become validators or delegate their tokens to existing validators. Staking helps secure the network and, in return, participants receive a portion of the transaction fees as rewards.

Applicable Fees:

1. Transaction Fees (Gas Fees):

Users pay gas fees in HT tokens to execute transactions and interact with smart contracts on the HECO network. These fees compensate validators for processing and validating transactions.

2. Smart Contract Execution Fees:

Deploying and interacting with smart contracts incur additional fees, which are also paid in HT tokens. These fees cover the computational resources required to execute contract code.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, huobi is calculated first. For the energy consumption of the token, a fraction

of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Ethereum Eth

۲

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Ethereum Eth	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/

Field	Value	Unit
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	2207257.20000	kWh/a
S.10 Renewable energy consumption	26.5386870830	%
S.11 Energy intensity	0.00010	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	734.60405	tCO2e
S.14 GHG intensity	0.00003	kgCO2e

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we

update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Conflux

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Conflux	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1837140.73200	kWh/a
S.10 Renewable energy consumption	24.1347029759	%

Field	Value	Unit
S.11 Energy intensity	0.00973	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	754.94600	tCO2e
S.14 GHG intensity	0.00401	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Conflux operates on a unique Tree-Graph consensus mechanism that combines Optimized Proof of Work (PoW) with Proof of Stake (PoS), allowing high transaction throughput, security, and scalability.

Core Components:

- 1. Tree-Graph Structure:
 - Concurrent Block Production: Conflux's Tree-Graph model enables blocks to be produced in parallel, rather than sequentially in a single chain. This structure significantly increases transaction throughput and efficiency compared to traditional blockchains.
 - Hierarchy for Fork Reduction: Unlike typical PoW blockchains where forks are common, Conflux's Tree-Graph organizes blocks hierarchically, allowing multiple chains to coexist without causing divergences. This minimizes the need for forks, ensuring stability and continuity in block production.
- 2. Optimized Proof of Work (PoW):

Conflux uses an optimized PoW model to maintain security and decentralization, offering similar security guarantees to traditional PoW systems but with enhanced efficiency, allowing high-performance block processing.

- 3. Proof of Stake (PoS) Integration:
 - PoS for Finality: PoS nodes in Conflux are selected based on the amount of staked CFX (Conflux's native token). These nodes sign pivot blocks to finalize them, reducing the probability of forks and ensuring rapid finality.
 - Balance Between PoW and PoS: By combining PoW and PoS, Conflux achieves a balanced, secure consensus system that leverages PoW's security while incorporating PoS for faster finality.

S.5 Incentive Mechanisms and Applicable Fees

Conflux incentivizes network participation and security through block rewards, transaction fees, and staking rewards, along with unique ecosystem support and storage fee structures.

Incentive Mechanisms:

- 1. Block Rewards and Transaction Fees for Miners:
 - Miners receive CFX rewards not only for mining blocks but also for securing the network. These rewards, including transaction fees, create an ongoing incentive for miners to participate actively and uphold network stability.
- 2. Staking Rewards for PoS Nodes:
 - PoS nodes, responsible for signing and finalizing pivot blocks, earn staking rewards based on their staked CFX amount. This reward structure encourages reliable PoS participation, enhancing network security and finality.

- 3. Dynamic Gas Fee Model:
 - Ethereum-Like Gas Model: Conflux uses a gas model similar to Ethereum's, where fees are calculated based on the computational resources required (measured in gas) and the current gas price, which adjusts based on network demand.
 - Dynamic Adjustment: During high network demand, gas fees increase to help manage congestion, while fees decrease in low-demand periods to promote network activity.
- 4. Ecosystem Fund Allocation:
 - A portion of transaction fees is allocated to the Conflux ecosystem fund, which supports longterm network development, community initiatives, and ecosystem growth. This fund helps sustain the network and fosters innovation within the ecosystem.
- 5. Storage Fee Model:
 - Conflux incorporates a storage fee to discourage unnecessary data storage on the blockchain. This model supports long-term sustainability by reducing blockchain bloat, helping to maintain efficient network performance over time.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) conflux is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism.

This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Toncoin

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Toncoin	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1407075.00000	kWh/a
S.10 Renewable energy consumption	26.5386870830	%
S.11 Energy intensity	0.00003	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	468.29295	tCO2e
S.14 GHG intensity	0.00001	kgCO2e

Quantitative information

Qualitative information

S.4 Consensus Mechanism

Toncoin utilizes a Proof of Stake (PoS) model with the Catchain consensus algorithm to provide a secure, scalable, and efficient multi-chain environment.

Core Components of Toncoin's Consensus:

- 1. Proof of Stake (PoS) with Validators:
 - Validator Role: Validators are required to stake Toncoin to participate in consensus. They validate transactions and secure the network by processing blocks and maintaining network integrity.
- 2. Catchain Consensus Algorithm:
 - High Scalability and Speed: The Catchain consensus protocol is specifically designed for Toncoin's multi-chain architecture, optimizing for fast and scalable operations across multiple shards.
 - Multi-Chain Compatibility: Catchain supports a sharded environment, allowing different chains (or shards) to reach consensus efficiently. This approach enhances the network's ability to process a high volume of transactions in parallel.
- 3. Byzantine Fault Tolerance (BFT):
 - Fault Tolerance: The Catchain protocol is Byzantine Fault Tolerant (BFT), meaning it can tolerate some level of malicious or faulty behavior among validators. This BFT compliance ensures that the network remains secure and functional even when a minority of validators act maliciously.
- 4. Validator Rotation and Slashing:
 - Regular Rotation: Validators are rotated regularly to enhance decentralization and security. This system prevents any single validator or group from maintaining control over consensus indefinitely.
 - Slashing for Malicious Behavior: Validators who act maliciously or fail to perform their duties may be penalized through slashing, losing a portion of their staked Toncoin. This discourages dishonest behavior and promotes reliable network participation.

S.5 Incentive Mechanisms and Applicable Fees

Toncoin incentivizes network security, participation, and efficiency through staking rewards, transaction fees, and slashing penalties.

Incentive Mechanisms:

- 1. Staking Rewards for Validators:
 - Rewards for Securing the Network: Validators earn staking rewards for actively participating in the network's consensus process and ensuring its security. These rewards are provided in Toncoin and are proportional to each validator's staked amount, encouraging validators to maintain their roles responsibly.
- 2. Transaction Fees:
 - Ongoing Income for Validators: Validators also receive a share of transaction fees from the blocks they validate, providing a consistent reward that grows with network usage. This additional income incentivizes validators to process transactions accurately and efficiently.
- 3. Decentralization through Validator Rotation:
 - Fair and Balanced Participation: The frequent rotation of validators ensures that new participants can join the validator set, promoting decentralization and preventing monopolization of the network by a small group of validators.
- 4. Slashing Mechanism:
 - Penalties for Dishonest Behavior: To maintain security, Toncoin enforces a slashing mechanism that penalizes validators who act maliciously or fail to fulfill their duties. This risk of losing staked Toncoin encourages validators to behave honestly and fulfill their responsibilities.

Applicable Fees:

Transaction Fees: Transaction fees on the TON blockchain are paid in Toncoin. These fees vary based on transaction complexity and network demand, ensuring that validators are compensated for their work and that resources are efficiently utilized.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

NEAR Protocol

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	NEAR Protocol	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	919959.27979	kWh/a
S.10 Renewable energy consumption	26.1931937639	%
S.11 Energy intensity	0.0008	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	309.80288	tCO2e
S.14 GHG intensity	0.00003	kgCO2e

Qualitative information

S.4 Consensus Mechanism

NEAR Protocol is present on the following networks: Binance Smart Chain, Ethereum, Near Protocol.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being

Ν

selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a novel approach called Doomslug, which enables high efficiency, fast transaction processing, and secure finality in its operations.

Core Concepts:

- 1. Doomslug and Proof of Stake:
 - NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR tokens to participate in securing the network. However, NEAR's implementation is enhanced with the Doomslug protocol.
 - Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds of validators approve the block, ensuring rapid transaction confirmation.
- 2. Sharding with Nightshade:
 - NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into multiple shards, enabling parallel processing of transactions across the network, thus significantly increasing throughput. Each shard processes a portion of transactions, and the outcomes are merged into a single "snapshot" block.
 - This sharding approach ensures scalability, allowing the network to grow and handle increasing demand efficiently.

Consensus Process:

- 1. Validator Selection:
 - Validators are selected to propose and validate blocks based on the amount of NEAR tokens staked. This selection process is designed to ensure that only validators with significant stakes and community trust participate in securing the network.
- 2. Transaction Finality:
 - NEAR achieves transaction finality through its PoS-based system, where validators vote on blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug, meaning that no forks can alter the confirmed state.
- 3. Epochs and Rotation:
 - Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in which validators are reshuffled, and new block proposers are selected, ensuring a balance between performance and decentralization.

S.5 Incentive Mechanisms and Applicable Fees

NEAR Protocol is present on the following networks: Binance Smart Chain, Ethereum, Near Protocol.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize participation.

Incentive Mechanisms to Secure Transactions:

- 1. Staking Rewards:
 - Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5% annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators propose blocks, validate transactions, and receive a share of these rewards based on their staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad participation.
- 2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and improve the chances of being selected to validate transactions. Delegators share in the validator's rewards based on their delegated tokens, incentivizing users to support reliable validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting dishonestly. The slashing mechanism enforces security by deducting a portion of their staked tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total circulating supply, introducing a potential deflationary effect over time. Validators also receive a portion of transaction fees as additional rewards, providing an ongoing incentive for network maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest is distributed to validators as compensation for their work. The burning mechanism helps maintain long-term economic sustainability and potential value appreciation for NEAR holders.

- 4. Reserve Requirement:
 - Users must maintain a minimum account balance and reserves for data storage, encouraging efficient use of resources and preventing spam attacks.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Avalanche AVAX

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Avalanche AVAX	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	822050.97723	kWh/a
S.10 Renewable energy consumption	25.4207037379	%
S.11 Energy intensity	0.00007	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	308.65203	tCO2e
S.14 GHG intensity	0.00003	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Avalanche AVAX is present on the following networks: Avalanche, Avalanche X Chain.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
 - Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

The Avalanche X-Chain uses the Avalanche consensus protocol, which relies on repeated subsampling of validators to reach agreement on transactions.

S.5 Incentive Mechanisms and Applicable Fees

Avalanche AVAX is present on the following networks: Avalanche, Avalanche X Chain.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.

Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.

- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:
 - New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Validator incentives on the X-Chain are indirect and come from network-wide AVAX issuance. Transaction fees are fixed and burned to prevent spam and reduce the total supply of AVAX over time

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When

calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) avalanche, avalanche_x_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geoinformation is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Cardano ADA

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Cardano ADA	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	813103.20000	kWh/a
S.10 Renewable energy consumption	26.1931305023	%
S.11 Energy intensity	0.00027	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	273.81815	tCO2e
S.14 GHG intensity	0.00009	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Core Components: Cardano uses the Ouroboros consensus mechanism, a Proof of Stake (PoS) protocol designed for scalability, security, and energy efficiency.

Core Concepts:

- 1. Proof of Stake (PoS): Validators (called slot leaders) are selected based on the amount of ADA they have staked, rather than solving complex computational puzzles. Validators propose and validate blocks, which are added to the blockchain.
- 2. Epochs and Slot Leaders: Cardano divides time into epochs (fixed time periods), each of which is subdivided into slots. Slot leaders are selected for each slot to validate and propose blocks. Slot leaders are chosen randomly based on the amount of ADA staked. More stake increases the probability of being selected. Validators are responsible for confirming transactions during their slot and passing the block to the next slot leader.
- 3. Delegation and Staking Pools: ADA holders can delegate their tokens to staking pools, which increases the pool's chances of being selected to validate a block. The pool operator and delegators share the rewards based on their stakes. This system ensures that participants who do not want to operate a full validator node can still earn rewards and contribute to network security by supporting trusted staking pools.
- 4. Security and Adversary Resistance: Ouroboros ensures security even in the presence of potential attacks. It assumes that adversaries may attempt to propagate alternative chains or send arbitrary messages. The protocol is secure as long as more than 51% of the staked ADA is controlled by honest participants. Settlement Delay: To protect against adversarial attacks, the new slot leader must consider the last few blocks as transient. Only the blocks preceding these are treated as finalized, ensuring that chain finality is secure against manipulation attempts. This mechanism also allows participants to temporarily go offline and resynchronize as long as they are not disconnected for more than the settlement delay period.
- 5. Chain Selection: Cardano's nodes adopt the longest valid chain rule: each node stores a local copy of the blockchain and replaces it with any discovered valid, longer chain. This ensures that all nodes eventually converge on a single version of the blockchain, maintaining network consistency.

S.5 Incentive Mechanisms and Applicable Fees

Cardano uses incentive mechanisms to ensure network security and decentralization through staking rewards, slashing mechanisms, and transaction fees.

Incentive Mechanisms to Secure Transactions:

- 1. Staking Rewards:
 - Validators, known as slot leaders, secure the network by validating transactions and creating new blocks. To participate, validators must stake ADA, and those with larger stakes are more likely to be selected as slot leaders.
 - Validators are rewarded with newly minted ADA and transaction fees for successfully producing blocks and validating transactions.
 - Delegators, who may not wish to run a validator node, can delegate their ADA to staking pools. By doing so, they contribute to the network's security and earn a share of the rewards earned by the pool. The rewards are distributed proportionally based on the amount of ADA delegated.
- 2. Slashing Mechanism:
 - To prevent malicious behavior, Cardano employs a slashing mechanism. Validators who act dishonestly, fail to validate transactions properly, or produce incorrect blocks face penalties that involve the slashing of a portion of their staked ADA.
 - This provides strong economic incentives for validators to act honestly and ensures the network's integrity and security.
- 3. Delegation and Pool Operation:
 - Staking pools can charge operation fees (a margin on rewards) to maintain their infrastructure. This includes fixed costs set by pool operators. Delegators earn rewards after pool fees are deducted, providing a balanced incentive for both operators and delegators to participate actively.
 - Rewards are distributed at the end of each epoch, where staking pool performance and participation determine the distribution of ADA rewards to all stakeholders.

Applicable Fees:

- 1. Transaction Fees:
 - Transaction fees on Cardano are paid in ADA and are generally low. They are calculated based on the size of the transaction and the network's current demand. These fees are paid to validators for including transactions in new blocks.
 - The fee formula is: a + b × size, where a is a constant (typically 0.155381 ADA), b is a coefficient related to the transaction size (0.000043946 ADA/byte), and size refers to the transaction size in bytes. This ensures that the fee adapts based on network load and the size of each transaction.
- 2. Staking Pool Fees:
 - Staking pool operators charge operational costs and a margin fee, which covers the cost of running and maintaining the staking pool. These fees vary between pools but ensure that operators can continue to provide their services while offering rewards to delegators.
 - After the operator's fee, the remaining rewards are distributed among the delegators based on the size of their stake.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating

the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

MultiversX EGLD

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	MultiversX EGLD	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/

Field	Value	Unit
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	742016.96006	kWh/a
S.10 Renewable energy consumption	24.1347079245	%
S.11 Energy intensity	0.00034	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	305.70804	tCO2e
S.14 GHG intensity	0.00014	kgCO2e

Qualitative information

S.4 Consensus Mechanism

MultiversX EGLD is present on the following networks: Binance Smart Chain, Multiversx.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously.

Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.

- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

MultiversX employs a consensus model called Secure Proof of Stake (SPoS), which integrates elements of Proof of Stake (PoS) with a rapid, randomized validator selection process. SPoS enables efficient and scalable consensus with high throughput and low latency.

Core Components:

- 1. Secure Proof of Stake (SPoS):
 - Randomized Validator Selection: Validators are selected in under 100 milliseconds based on their stake, with a quick rotation to maintain efficiency and prevent centralization.
 - Validator and Observer Nodes: Validator nodes process transactions and produce blocks, while Observer nodes are read-only, providing data access and network monitoring.
- 2. Adaptive State Sharding:
 - Parallel Transaction Processing: Adaptive State Sharding splits the network into shards, allowing for simultaneous transaction processing across multiple shards, which enhances scalability and network performance.
- 3. Meta Chain Coordination:
 - Cross-Shard Finalization: The Meta Chain manages cross-shard transactions, finalizing blocks and ensuring data consistency between shards.

S.5 Incentive Mechanisms and Applicable Fees

MultiversX EGLD is present on the following networks: Binance Smart Chain, Multiversx.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.

2. Block Rewards:

- Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

MultiversX incentivizes network participation through staking rewards and transaction fees, supporting network security and performance.

Incentive Mechanisms:

Staking Rewards for Validators and Delegators:

- Validator Rewards: Validators earn EGLD tokens for processing transactions and producing blocks.
- Delegation Rewards: EGLD holders can delegate their tokens to validators to receive a portion of the staking rewards without managing a node.

Applicable Fees:

- 1. Transaction Fees:
 - Fee Structure: Fees are paid in EGLD and vary based on transaction complexity and size, covering smart contract execution, asset transfers, and other network interactions.
- 2. Delegation Opportunities:

Passive Staking for EGLD Holders: EGLD holders who delegate their tokens share in staking rewards, supporting network security and earning passive income.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Polkadot DOT

 \bigcirc

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Polkadot DOT	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	630739.80073	kWh/a
S.10 Renewable energy consumption	27.3187045521	%
S.11 Energy intensity	0.00030	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	186.15069	tCO2e
S.14 GHG intensity	0.00009	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Polkadot DOT is present on the following networks: Binance Smart Chain, Huobi, Polkadot.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently

active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process

- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and scalability.

Key Features of HECO's Consensus Mechanism:

- 1. Validator Selection: HECO supports up to 21 validators, selected based on their stake in the network.
- 2. Transaction Processing: Validators are responsible for processing transactions and adding blocks to the blockchain.
- 3. Transaction Finality: The consensus mechanism ensures quick finality, allowing for rapid confirmation of transactions.
- 4. Energy Efficiency: By utilizing PoS elements, HECO reduces energy consumption compared to traditional Proof-of-Work systems.

Polkadot, a heterogeneous multi-chain framework designed to enable different blockchains to interoperate, uses a sophisticated consensus mechanism known as Nominated Proof-of-Stake (NPoS). This mechanism combines elements of Proof-of-Stake (PoS) and a layered consensus model involving multiple roles and stages.

Core Components:

- 1. Validators: Validators are responsible for producing new blocks and finalizing the relay chain, Polkadot's main chain. They stake DOT tokens and validate transactions, ensuring the security and integrity of the network.
- 2. Nominators: Nominators delegate their stake to trusted validators, choosing which validators they believe will act honestly and effectively. They share in the rewards and penalties of the validators they nominate.

- 3. Collators: Collators maintain parachains (individual blockchains that connect to the Polkadot relay chain) by collecting transactions from users and producing state transition proofs for validators.
- 4. Fishermen: Fishermen monitor the network for malicious activity. They report bad behavior to the validators to help maintain network security.

Consensus Process: Polkadot's consensus mechanism operates through a combination of two key protocols: GRANDPA (GHOST-based Recursive Ancestor Deriving Prefix Agreement) and BABE (Blind Assignment for Blockchain Extension).

- 1. BABE (Block Production): BABE is the block production mechanism. It operates similarly to a lottery, where validators are pseudo-randomly assigned slots to produce blocks based on their stake. Each validator signs the blocks they produce, which are then propagated through the network.
- 2. GRANDPA (Finality): GRANDPA is the finality gadget that provides a higher level of security by finalizing blocks after they are produced. Unlike traditional blockchains where blocks are considered final after a number of confirmations, GRANDPA allows for asynchronous finality. Validators vote on chains, and once a supermajority agrees, the chain is finalized instantly.

Detailed Steps:

- 1. Block Production (BABE):
 - Slot Allocation: Validators are selected to produce blocks in specific time slots.
 - Block Proposal: The selected validator for a slot proposes a block, including new transactions and state changes.
- 2. Block Propagation and Preliminary Consensus: Proposed blocks are propagated across the network, where other validators verify the correctness of the transactions and state transitions.
- 3. Finalization (GRANDPA):
 - Voting on Blocks: Validators vote on the chains they believe to be the correct history.
 - Supermajority Agreement: Once more than two-thirds of validators agree on a block, it is finalized.
 - Instant Finality: This finality process ensures that once a block is finalized, it is irreversible and becomes part of the canonical chain.
- 4. Rewards and Penalties: Validators and nominators earn rewards for participating in the consensus process and maintaining network security. Misbehavior, such as producing invalid blocks or being offline, results in penalties, including slashing of staked tokens.

S.5 Incentive Mechanisms and Applicable Fees

Polkadot DOT is present on the following networks: Binance Smart Chain, Huobi, Polkadot.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.

- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and scalability.

Incentive Mechanism:

1. Validator Rewards:

Validators are selected based on their stake in the network. They process transactions and add blocks to the blockchain. Validators receive rewards in the form of transaction fees for their role in maintaining the blockchain's integrity.

2. Staking Participation:

Users can stake Huobi Token (HT) to become validators or delegate their tokens to existing validators. Staking helps secure the network and, in return, participants receive a portion of the transaction fees as rewards.

Applicable Fees:

1. Transaction Fees (Gas Fees):

Users pay gas fees in HT tokens to execute transactions and interact with smart contracts on the HECO network. These fees compensate validators for processing and validating transactions.

2. Smart Contract Execution Fees:

Deploying and interacting with smart contracts incur additional fees, which are also paid in HT tokens. These fees cover the computational resources required to execute contract code.

Polkadot uses a consensus mechanism called Nominated Proof-of-Stake (NPoS), which involves a combination of validators, nominators, and a unique layered consensus process to secure the network:

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are responsible for producing new blocks and finalizing the relay chain. They are incentivized with staking rewards, which are distributed in proportion to their stake and their performance in the consensus process. Validators earn these rewards for maintaining uptime and correctly validating transactions.
 - Commission: Validators can set a commission rate that they charge on the rewards earned by their nominators. This incentivizes them to perform well to attract more nominators.
- 2. Nominators:
 - Delegation: Nominators stake their tokens by delegating them to trusted validators. They share in the rewards earned by the validators they support. This mechanism incentivizes nominators to carefully choose reliable validators.
 - Rewards Distribution: The rewards are distributed among validators and their nominators based on the amount of stake contributed by each party. This ensures that both parties are incentivized to maintain the network's security.
- 3. Collators:

Parachain Maintenance: Collators maintain parachains by collecting transactions and producing state transition proofs for validators. They are incentivized through rewards for their role in keeping the parachain operational and secure.

4. Fishermen:

Monitoring: Fishermen are responsible for monitoring the network for malicious activities. They are rewarded for identifying and reporting malicious behavior, which helps maintain the network's security.

- 5. Economic Penalties:
 - Slashing: Validators and nominators face penalties in the form of slashing if they engage in malicious activities such as double-signing or being offline for extended periods. Slashing results in the loss of a portion of their staked tokens, which serves as a strong deterrent against bad behavior.
 - Unbonding Period: To withdraw staked tokens, participants must go through an unbonding period during which their tokens are still at risk of being slashed. This ensures continued network security even when validators or nominators decide to exit.

Fees on the Polkadot Blockchain:

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Polkadot are dynamic, adjusting based on network demand and the complexity of the transaction. This model ensures that fees remain fair and proportional to the network's usage.

- Fee Burn: A portion of the transaction fees is burned (permanently removed from circulation), which helps to control inflation and can potentially increase the value of the remaining tokens.
- 2. Smart Contract Fees:
- Execution Costs: Fees for deploying and interacting with smart contracts on Polkadot are based on the computational resources required. This encourages efficient use of network resources.
- 3. Parachain Slot Auction Fees:
 - Bidding for Slots: Projects that want to secure a parachain slot must participate in a slot auction. They bid DOT tokens, and the highest bidders win the right to operate a parachain for a specified period. This process ensures that only serious projects with significant backing can secure parachain slots, contributing to the network's overall quality and security.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, huobi is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute"

[dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Arweave

(a)

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Arweave	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	629407.21102	kWh/a
S.10 Renewable energy consumption	24.1347076013	%
S.11 Energy intensity	0.00000	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	259.31320	tCO2e
S.14 GHG intensity	0.00000	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Arweave is present on the following networks: Arweave, Ethereum.

Arweave employs a unique Proof of Access (PoA) consensus mechanism, which integrates a requirement for miners to provide cryptographic proof of access to historical data, known as a "recall block." This ensures that miners contribute to both data storage and network security by storing and verifying historical data.

Core Components:

- 1. Proof of Access (PoA):
 - Recall Block Verification: During mining, miners must retrieve and validate a randomly selected "recall block" from Arweave's data history, proving they retain access to stored data. This process secures the network while emphasizing long-term data availability.
 - Enhanced Proof of Work (PoW): PoA builds upon traditional PoW by requiring miners to demonstrate access to previously stored data, adding a storage-focused layer to network security and incentivizing distributed data retention.
- 2. Data-Centric Mining Incentives:

Distributed Storage: The PoA design encourages miners to store a broad history of blocks, as possessing more recall blocks enhances their probability of successfully mining new blocks and earning rewards.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Arweave is present on the following networks: Arweave, Ethereum.

Arweave's economic model incentivizes miners to contribute to data storage through upfront storage fees and ongoing block rewards, supporting the network's mission of providing permanent and accessible data storage.

Incentive Mechanisms:

- 1. One-Time Storage Fees:
 - Permanent Data Storage: Users pay a one-time, upfront fee in AR tokens, calculated based on data size and projected storage costs. This fee funds indefinite data storage on the network. Endowment Pool: A portion of each storage fee is allocated to an endowment pool, covering future storage costs as technology advances, ensuring sustainable, permanent data storage.
- 2. Mining Rewards:

Block Rewards: Miners earn AR tokens for successfully mining blocks, incentivizing them to store historical data and maintain network integrity.

Applicable Fees: Storage fees in AR are set by data size and projected long-term costs, covering the initial and future costs of data permanence.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Flow

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Flow	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	513558.02755	kWh/a
S.10 Renewable energy consumption	26.5386870830	%
S.11 Energy intensity	0.00025	kWh
S.12 Scope 1 DLT GHG emission - Controlled	0.00000	tCO2e
S.13 Scope 2 DLT GHG emission - Purchased	170.91884	tCO2e
S.14 GHG intensity	0.00008	kgCO2e

Qualitative information

S.4 Consensus Mechanism

Flow is present on the following networks: Ethereum, Flow.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,

but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Flow employs a Proof of Stake (PoS) model with a multi-role node architecture and the HotStuff Byzantine Fault Tolerant (BFT) protocol to achieve high throughput, scalability, and fast finality.

Core Components of Flow's Consensus:

- 1. Proof of Stake with Multi-Role Architecture:
- Specialized Node Roles: Flow's PoS model features a multi-node architecture where node roles are divided among different types of specialized nodes, each responsible for specific tasks. This separation enhances scalability by allowing nodes to focus on particular operations, leading to efficient transaction processing and high throughput.
- 2. HotStuff Consensus Algorithm:
 - Optimized for High Throughput and Fast Finality: Flow utilizes an optimized version of the HotStuff consensus protocol, which is designed to support high-speed, low-latency transactions essential for Flow's performance-oriented blockchain.
 - BFT Compliance: HotStuff is a BFT protocol, allowing it to tolerate up to one-third of nodes acting maliciously without compromising the network's security. This resilience ensures the network remains secure and functional, even with potential faults or dishonest nodes.
- 3. Leader-Based Block Proposal:
 - Leader and Replica Nodes: HotStuff operates with a leader-based approach where a designated leader node proposes new blocks, and other nodes (replicas) validate these blocks. This method simplifies the consensus process, reducing complexity and improving efficiency.
 - Leader Rotation Mechanism: To prevent centralization and enhance fault tolerance, HotStuff incorporates a leader rotation system, replacing the leader if it becomes unresponsive or acts maliciously. This rotation ensures continuous network reliability and minimizes downtime.

S.5 Incentive Mechanisms and Applicable Fees

Flow is present on the following networks: Ethereum, Flow.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Flow's incentive model rewards validator nodes, supports ecosystem growth, and maintains affordable fees for developers and users.

Incentive Mechanisms:

- 1. Staking Rewards for Specialized Nodes:
- Role-Based Rewards: Validators earn Flow tokens according to their specific roles and contributions within the multi-node architecture, aligning rewards with each node's responsibilities to encourage balanced and effective network participation.

2. Transaction Fees:

Stable and Consumer-Friendly Fees: Flow's fee structure is designed for predictability, keeping transaction costs stable for both developers and users. Fees are based on transaction complexity and provide an ongoing income stream for validators.

3. Misbehavior Penalties:

Penalties for Downtime or Malicious Behavior: To maintain network stability, Flow imposes penalties on validators for misbehavior or downtime. This incentivizes high-quality validator participation and ensures consistent performance.

4. Ecosystem and Developer Support:

Dedicated Portion of Fees and Rewards: A portion of Flow's transaction fees and rewards is allocated to developer initiatives, ecosystem growth, and community engagement. This investment fosters innovation, supports long-term network health, and aligns incentives for ecosystem development.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/ grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Kusama

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Kusama	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	474616.80000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Kusama is a scalable, interoperable blockchain platform built using a Nominated Proof of Stake (NPoS) consensus mechanism. It is a canary network for Polkadot, allowing developers to experiment and deploy new features before they are added to Polkadot. Kusama's NPoS mechanism ensures high security, decentralized control, and rapid block finality.

Key Features of Kusama's Consensus Mechanism:

1. Nominated Proof of Stake (NPoS):

- Validators and Nominators: Kusama's consensus mechanism relies on validators and nominators. Validators are responsible for producing blocks and validating transactions, while nominators select trustworthy validators by staking KSM (Kusama's native token).

- Staking and Security: Validators must stake KSM tokens to participate in consensus, and nominators back validators with their KSM tokens. The more KSM tokens staked by both validators and nominators, the more secure the network is.
- Validator Rotation: Validators are selected based on the amount of KSM staked, with a fixed number of validators chosen to participate in consensus at any given time. The network periodically rotates validators to ensure fairness and prevent centralization.
- Finality and Security: NPoS ensures secure and fast finality. Once a block is validated, it becomes part of the immutable blockchain, meaning it cannot be reverted or reorganized.
- 2. Governance:
 - On-Chain Governance: Kusama features a robust on-chain governance system that allows KSM holders to vote on important protocol decisions, including changes to the consensus mechanism, network upgrades, and other governance parameters.
 - Democratic Decision-Making: All token holders have voting power proportional to the amount of KSM they hold and are willing to lock up. This ensures decentralized control over network upgrades and parameters.
 - Governance Proposals: Kusama's governance is open and transparent, with proposals submitted by the community, allowing participants to shape the direction of the network.
- 3. Parachain Auctions:
 - Shared Security: Kusama supports parachains, which are individual blockchains that benefit from Kusama's shared security model. Parachain slots are won through auctions where participants bid with KSM tokens, ensuring that only the most committed participants secure a parachain slot.
 - Scalability: This multi-chain model enables Kusama to scale horizontally, allowing for the connection of numerous independent blockchains, which can interoperate within the Kusama ecosystem.
- 4. Fast Finality and High Throughput:
 - Speed: Kusama's consensus mechanism allows for rapid block finality and high throughput, supporting thousands of transactions per second.
 - Low Latency: The system's low-latency design ensures quick confirmation times, enabling Kusama to handle high transaction volumes efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Kusama's incentive mechanisms ensure active participation in securing and maintaining the network while its fee structure supports efficient operation and scalability of the ecosystem.

Incentive Mechanism:

- 1. Validator Rewards:
 - Block Rewards: Validators in Kusama earn rewards for successfully producing blocks and validating transactions. These rewards are given in KSM tokens and are distributed proportionally to the amount of KSM staked by validators and nominators.
 - Transaction Fees: In addition to block rewards, validators also earn transaction fees for validating and including transactions in blocks. These fees are paid by users who want their transactions included in the next block.
- 2. Nominator Rewards:
 - Staking Rewards: Nominators, who delegate their KSM tokens to trusted validators, share in the rewards earned by the validators they support. Nominators receive a proportion of both the block rewards and transaction fees, incentivizing them to choose high-performing validators.
 - Reward Distribution: The rewards earned by nominators are distributed based on the amount of KSM they have staked with a validator. More KSM staked means higher rewards for the nominator.

- 3. Parachain Auction Participation:
 - Slot Auctions: Kusama's parachain slots are won through an auction process, where participants bid using KSM tokens. This incentivizes KSM holders to lock up their tokens in parachain auctions to secure valuable parachain slots for their projects.
 - Crowdloan Incentives: Projects bidding for parachain slots can incentivize users to participate in crowdloans, where users lend their KSM tokens to the project in exchange for potential rewards once the project secures a parachain slot.
- 4. Governance Participation:

Voting Rewards: KSM token holders who participate in governance decisions, such as voting on proposals and upgrades, are incentivized with the ability to influence the future of the network. Although there are no direct financial rewards for voting, active participation in governance ensures the sustainability and growth of the ecosystem.

Applicable Fees:

- 1. Transaction Fees:
 - Fee Structure: Kusama users pay transaction fees for processing their transactions on the network. These fees are generally low and are determined by the transaction's size and network demand. Transaction fees are paid in KSM tokens and are used to compensate validators for their work.
 - Dynamic Fee Adjustment: The fee rate can adjust based on the current network congestion. During periods of high demand, transaction fees can increase, prioritizing faster processing of transactions with higher fees.
- 2. Parachain Slot Auction Fees:
 - Bidding Fees: Projects wishing to secure a parachain slot must participate in an auction and bid KSM tokens to win the slot. The auction fees paid to win a parachain slot are burned or redistributed within the Kusama ecosystem to support network growth and maintenance.
- 3. Storage Fees:

Data Storage: Kusama charges fees for storing data on the network, including smart contracts and parachain data. These fees are required to ensure efficient data usage and prevent unnecessary resource consumption. Fees for storage are also paid in KSM tokens.

4. Governance Fees:

Proposal and Voting Costs: Participants in governance, such as those submitting proposals or voting on network upgrades, may be required to pay minimal fees, ensuring the governance process is secure and spam-free. These costs help prevent abuse of the voting system and are intended to maintain an orderly governance environment.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

USDC

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	USDC	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	459626.87250	kWh/a

Qualitative information

S.4 Consensus Mechanism

USDC is present on the following networks: Algorand, Aptos Coin, Arbitrum, Avalanche, Base, Celo, Ethereum, Hedera Hbar, Linea, Near Protocol, Optimism, Polygon, Solana, Statemint, Stellar, Sui, Zksync.

The Algorand blockchain utilizes a consensus mechanism termed Pure Proof-of-Stake (PPoS). Consensus, in this context, describes the method by which blocks are selected and appended to the blockchain. Algorand employs a verifiable random function (VRF) to select leaders who propose blocks for each round.

Upon block proposal, a pseudorandomly selected committee of voters is chosen to evaluate the proposal. If a supermajority of these votes are from honest participants, the block is certified. What makes this algorithm a Pure Proof of Stake is that users are chosen for committees based on the number of algos in their accounts. This system leverages random committee selection to maintain high performance and inclusivity within the network.

The consensus process involves three stages:

- 1. Propose: A leader proposes a new block.
- 2. Soft Vote: A committee of voters assesses the proposed block.
- 3. Certify Vote: Another committee certifies the block if it meets the required honesty threshold.

Aptos utilizes a Proof-of-Stake approach combined with a BFT consensus protocol to ensure high throughput, low latency, and secure transaction processing.

Core Components:

- Parallel Execution: Transactions are processed concurrently using Block-STM, a parallel execution engine, enabling high performance and scalability.
- Leader-Based BFT: A leader is selected among validators to propose blocks, while others validate and finalize transactions.
- Dynamic Validator Rotation: Validators are rotated regularly, enhancing decentralization and preventing collusion.
- Instant Finality: Transactions achieve finality once validated, ensuring that they are irreversible.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:

- Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

Celo uses a Proof of Stake (PoS) consensus model, which supports a decentralized, communitydriven approach to governance and network security.

Core Components of Celo's Consensus:

- 1. Proof of Stake (PoS):
 - Validator Role: Validators are responsible for creating new blocks, validating transactions, and maintaining the security and integrity of the network. Validators are selected based on the amount of CELO tokens they hold and stake, incentivizing honest participation and network reliability.
- 2. Decentralized Governance:
 - Community Voting: Governance on Celo is decentralized, allowing CELO token holders to vote on proposals and changes to the network. This community-driven approach ensures that token holders have a say in the network's development and strategic direction.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Hedera Hashgraph operates on a unique Hashgraph consensus algorithm, a directed acyclic graph (DAG) system that diverges from traditional blockchain technology. It uses Asynchronous Byzantine Fault Tolerance (aBFT) to secure the network.

Core Components:

- 1. Hashgraph Consensus and aBFT:
 - Hedera Hashgraph's consensus mechanism achieves aBFT, which allows the network to tolerate malicious nodes without compromising security, ensuring high levels of fault tolerance and stability.
- 2. Gossip about Gossip Protocol:

The network employs a "Gossip about Gossip" protocol, where nodes share transaction information along with details of previous gossip events. This process allows each node to rapidly learn the entire network state, enhancing communication efficiency and minimizing latency.

- 3. Virtual Voting:
 - Hedera does not rely on traditional miners or stakers. Instead, it uses virtual voting, where nodes reach consensus by analyzing the gossip history and simulating votes based on the order and frequency of transactions received. Virtual voting eliminates the need for actual voting messages, reducing network congestion and speeding up consensus.

4. Deterministic Finality:

Once consensus is reached, transactions achieve deterministic finality instantly, making them irreversible and confirmed within seconds. This attribute is ideal for applications needing quick and irreversible transaction confirmations.

5. Staking for Network Security:

Hedera incorporates staking to bolster network security. HBAR holders can stake their tokens to support validator nodes, contributing to the network's resilience and encouraging long-term engagement in consensus operations.

Linea employs Zero-Knowledge Rollups (zk-Rollups) to ensure scalable, secure, and efficient transaction processing while maintaining full compatibility with the Ethereum ecosystem.

Core Components:

- Zero-Knowledge Rollups (zk-Rollups): Transactions are aggregated off-chain into batches, and a single zero-knowledge proof is submitted to the Ethereum mainnet, reducing on-chain congestion and improving scalability.
- Type 2 zkEVM: Linea is fully compatible with the Ethereum Virtual Machine (EVM), enabling seamless integration with Ethereum-based smart contracts and dApps.
- Proof Aggregation: The network employs proof aggregation to finalize multiple batches of transactions into a single zero-knowledge proof, ensuring secure and efficient finalization of Layer 2 activity on the Ethereum mainnet.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a novel approach called Doomslug, which enables high efficiency, fast transaction processing, and secure finality in its operations.

Core Concepts:

- 1. Doomslug and Proof of Stake:
 - NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR tokens to participate in securing the network. However, NEAR's implementation is enhanced with the Doomslug protocol.
 - Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds of validators approve the block, ensuring rapid transaction confirmation.
- 2. Sharding with Nightshade:
 - NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into multiple shards, enabling parallel processing of transactions across the network, thus significantly increasing throughput. Each shard processes a portion of transactions, and the outcomes are merged into a single "snapshot" block.
 - This sharding approach ensures scalability, allowing the network to grow and handle increasing demand efficiently.

Consensus Process:

- 1. Validator Selection:
 - Validators are selected to propose and validate blocks based on the amount of NEAR tokens staked. This selection process is designed to ensure that only validators with significant stakes and community trust participate in securing the network.
- 2. Transaction Finality:
 - NEAR achieves transaction finality through its PoS-based system, where validators vote on blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug, meaning that no forks can alter the confirmed state.

- 3. Epochs and Rotation:
 - Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in which validators are reshuffled, and new block proposers are selected, ensuring a balance between performance and decentralization.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

- 1. Optimistic Rollups:
 - Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
 - State Commitments: The state of these transactions is periodically committed to the Ethereum main chain.
- 2. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering transactions and creating batches.
 - State Updates: Sequencers update the state of the rollup and submit these updates to the Ethereum main chain.
 - Block Production: They construct and execute Layer 2 blocks, which are then posted to Ethereum.
- 3. Fraud Proofs:
 - Assumption of Validity: Transactions are assumed to be valid by default.
 - Challenge Period: A specific time window during which anyone can challenge a transaction by submitting a fraud proof.
 - Dispute Resolution: If a transaction is challenged, an interactive verification game is played to determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest participant is penalized.

Consensus Process:

- 1. Transaction Submission: Users submit transactions to the sequencer, which orders them into batches.
- 2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2 state.
- 3. State Commitment: The updated state and the batch of transactions are periodically committed to the Ethereum main chain. This is done by posting the state root (a cryptographic hash representing the state) and transaction data as calldata on Ethereum.
- 4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which anyone can submit a fraud proof if they believe a transaction is invalid.
 - Interactive Verification: The dispute is resolved through an interactive verification game, which involves breaking down the transaction into smaller steps to identify the exact point of fraud.
 - Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses their staked collateral as a penalty.
- 5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final. This means the transactions are accepted as valid, and the state updates are permanent.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

Statemint is a common-good parachain on the Polkadot and Kusama networks, designed to handle asset management and issuance efficiently while leveraging Polkadot's shared security model.

Core Components:

- Relay Chain Integration: Statemint inherits its consensus mechanism from the Polkadot Relay Chain, which operates on a Nominated Proof of Stake (NPoS) model. This model ensures robust security and decentralization by relying on validators and nominators.
- Shared Security: As a parachain, Statemint utilizes the Polkadot Relay Chain's validators for block validation, ensuring high security and interoperability without requiring independent validators.
- Collator Nodes: Statemint employs collator nodes to aggregate transactions into blocks and submit them to the Relay Chain validators for finalization. Collators do not participate in consensus directly but play a key role in transaction processing.
- Immediate Finality: The underlying Polkadot consensus mechanism ensures instant finality using the GRANDPA (GHOST-based Recursive Ancestor Deriving Prefix Agreement) protocol, which provides secure and efficient transaction confirmation.

Stellar uses a unique consensus mechanism known as the Stellar Consensus Protocol (SCP).

Core Concepts:

- 1. Federated Byzantine Agreement (FBA):
 - SCP is built on the principles of Federated Byzantine Agreement (FBA), which allows decentralized, leaderless consensus without the need for a closed system of trusted participants.
 - Quorum Slices: Each node in the network selects a set of other nodes (quorum slice) that it trusts. Consensus is achieved when these slices overlap and collectively agree on the transaction state.
- 2. Nodes and Validators:
 - Nodes: Nodes running the Stellar software participate in the network by validating transactions and maintaining the ledger.
 - Validators: Nodes that are responsible for validating transactions and reaching consensus on the state of the ledger. Consensus Process
- 3. Transaction Validation:

Transactions are submitted to the network and nodes validate them based on predetermined rules, such as sufficient balances and valid signatures.

- 4. Nomination Phase:
 - Nomination: Nodes nominate values (proposed transactions) that they believe should be included in the next ledger. Nodes communicate their nominations to their quorum slices.
 - Agreement on Nominations: Nodes vote on the nominated values, and through a process of voting and federated agreement, a set of candidate values emerges. This phase continues until nodes agree on a single value or a set of values.

- 5. Ballot Protocol (Voting and Acceptance): Balloting:
 - The agreed-upon values from the nomination phase are then put into ballots. Each ballot goes through multiple rounds of voting, where nodes vote to either accept or reject the proposed values.
 - Federated Voting: Nodes exchange votes within their quorum slices, and if a value receives sufficient votes across overlapping slices, it moves to the next stage.
 - Acceptance and Confirmation: If a value gathers enough votes through multiple stages (prepare, confirm, externalize), it is accepted and externalized as the next state of the ledger.
- 6. Ledger Update:

Once consensus is reached, the new transactions are recorded in the ledger. Nodes update their copies of the ledger to reflect the new state. Security and Economic Incentives

7. Trust and Quorum Slices:

Nodes are free to choose their own quorum slices, which provides flexibility and decentralization. The overlapping nature of quorum slices ensures that the network can reach consensus even if some nodes are faulty or malicious.

8. Stability and Security:

SCP ensures that the network can achieve consensus efficiently without relying on energyintensive mining processes. This makes it environmentally friendly and suitable for highthroughput applications.

9. Incentive Mechanisms:

Unlike Proof of Work (PoW) or Proof of Stake (PoS) systems, Stellar does not rely on direct economic incentives like mining rewards. Instead, the network incentivizes participation through the intrinsic value of maintaining a secure, efficient, and reliable payment network.

The Sui blockchain utilizes a Byzantine Fault Tolerant (BFT) consensus mechanism optimized for high throughput and low latency.

Core Components:

- 1. Mysten Consensus Protocol:
 - The Sui consensus is based on Mysten Labs' Byzantine Fault Tolerance (BFT) protocol, which builds on principles of Practical Byzantine Fault Tolerance (pBFT) but introduces key optimizations for performance.
 - Leaderless Design: Unlike traditional BFT models, Sui does not rely on a single leader to propose blocks. Validators can propose blocks simultaneously, increasing efficiency and reducing the risks associated with leader failure or attacks.
 - Parallel Processing: Transactions can be processed in parallel, maximizing network throughput by utilizing multiple cores and threads. This allows for faster confirmation of transactions and high scalability.
- 2. Transaction Validation:
 - Validators are responsible for receiving transaction requests from clients and processing them. Each transaction includes digital signatures and must meet the network's rules to be considered valid. Validators can propose transactions simultaneously, unlike many other networks that require a sequential, leader-driven process.
- 3. Optimistic Execution:

Optimistic Consensus: Sui allows validators to process certain non-contentious, independent transactions without waiting for full consensus. This is known as optimistic execution and helps reduce transaction latency for many use cases, allowing for fast finality in most cases.

- 4. Finality and Latency:
 - The system only requires three rounds of communication between validators to finalize a transaction. This results in low-latency consensus and rapid transaction confirmation times, achieving scalability while maintaining security.

5.Fault Tolerance:

The system can tolerate up to one-third of validators being faulty or malicious without compromising the integrity of the consensus process.

zkSync operates as a Layer 2 scaling solution for Ethereum, leveraging zero-knowledge rollups (ZK-Rollups) to enable fast, cost-effective, and secure transactions. This consensus mechanism allows zkSync to offload transaction computation from Ethereum's Layer 1, ensuring scalability while maintaining Ethereum's base-layer security.

Core Components:

- Zero-Knowledge Rollups (ZK-Rollups):

zkSync aggregates multiple transactions off-chain and processes them in batches. A cryptographic proof, called a validity proof, is generated for each batch and submitted to the Ethereum mainnet. This ensures that all transactions are valid and compliant with Ethereum's rules without processing them individually on Layer 1.

- Validity Proofs:

zkSync uses zk-SNARKs (Succinct Non-Interactive Arguments of Knowledge) for its validity proofs. These proofs provide mathematical guarantees that transactions within a batch are valid, eliminating the need for Ethereum nodes to re-execute off-chain transactions.

- Sequencers:

Transactions on zkSync are ordered and processed by sequencers, which bundle transactions into batches. Sequencers maintain network efficiency and provide fast confirmations.

- Fraud Resistance:

Unlike Optimistic Rollups, zkSync relies on validity proofs rather than fraud proofs, meaning that transactions are final and secure as soon as the validity proof is accepted by Ethereum.

- Data Availability:
 - All transaction data is stored on-chain, ensuring that the network remains decentralized and users can reconstruct the state of zkSync at any time.

S.5 Incentive Mechanisms and Applicable Fees

USDC is present on the following networks: Algorand, Aptos Coin, Arbitrum, Avalanche, Base, Celo, Ethereum, Hedera Hbar, Linea, Near Protocol, Optimism, Polygon, Solana, Statemint, Stellar, Sui, Zksync.

Algorand's consensus mechanism, Pure Proof-of-Stake (PPoS), relies on the participation of token holders (stakers) to ensure the network's security and integrity:

- 1. Participation Rewards:
 - Staking Rewards: Users who participate in the consensus protocol by staking their ALGO tokens earn rewards. These rewards are distributed periodically and are proportional to the amount of ALGO staked. This incentivizes users to hold and stake their tokens, contributing to network security and stability.
 - Node Participation Rewards: Validators, also known as participation nodes, are responsible for proposing and voting on blocks. These nodes receive additional rewards for their active role in maintaining the network.
- 2. Transaction Fees:
 - Flat Fee Model: Algorand employs a flat fee model for transactions, which ensures predictability and simplicity. The standard transaction fee on Algorand is very low (around 0.001 ALGO per transaction). These fees are paid by users to have their transactions processed and included in a block.

- Fee Redistribution: Collected transaction fees are redistributed to participants in the network. This includes stakers and validators, further incentivizing their participation and ensuring continuous network operation.
- 3. Economic Security:

Token Locking: To participate in the consensus mechanism, users must lock up their ALGO tokens. This economic stake acts as a security deposit that can be slashed (forfeited) if the participant acts maliciously. The potential loss of staked tokens discourages dishonest behavior and helps maintain network integrity.

Fees on the Algorand Blockchain

1. Transaction Fees:

Algorand uses a flat transaction fee model. The current standard fee is 0.001 ALGO per transaction. This fee is minimal compared to other blockchain networks, ensuring affordability and accessibility.

2. Smart Contract Execution Fees:

Fees for executing smart contracts on Algorand are also designed to be low. These fees are based on the computational resources required to execute the contract, ensuring that users are only charged for the actual resources they consume.

3. Asset Creation Fees:

Creating new assets (tokens) on the Algorand blockchain involves a small fee. This fee is necessary to prevent spam and ensure that only genuine assets are created and maintained on the network.

Incentive Mechanism:

- Validator Rewards: Validators earn rewards in APT tokens for validating transactions and producing blocks. Rewards are distributed proportionally based on the stake of validators and their delegators.
- Delegator Participation: APT token holders can delegate their tokens to validators, earning a share of the staking rewards without running their own nodes.
- Slashing Mechanism: Validators face penalties, such as losing staked tokens, for malicious actions or prolonged inactivity, ensuring accountability and network security.

Applicable Fees:

- Transaction Fees: Users pay transaction fees in APT tokens for sending transactions and interacting with smart contracts.
- Dynamic Fee Adjustment: Fees are dynamically adjusted based on network activity and resource usage, ensuring cost efficiency and preventing congestion.
- Fee Distribution: Transaction fees are distributed among validators and delegators, providing an additional incentive for network participation.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.

- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

- 1. Validators:
- Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.
- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

Celo's incentive model rewards validators and prioritizes accessibility with minimal transaction fees, especially for cross-border payments, supporting a flexible and user-friendly ecosystem.

Incentive Mechanisms:

1. Validator Rewards:

Transaction Fees and Newly Minted Tokens: Validators earn rewards from transaction fees as well as newly minted CELO tokens. This dual-source reward system provides a continuous financial incentive for validators to act honestly and secure the network.

- 2. Transaction Flexibility and Gas Price:
 - Gas Limit and Price Control: Each transaction specifies a maximum gas limit, ensuring that users are not excessively charged if a transaction fails. Users can also set a gas price to prioritize transactions, allowing faster processing for higher fees.
 - Payment Flexibility with Multiple Currencies: Unlike many blockchains, Celo allows transaction fees to be paid in various ERC-20 tokens, providing flexibility for users. This approach improves accessibility, especially for individuals with limited access to traditional banking.
- 3. Minimal Fee Structure for Accessibility:
 - Designed for Low-Cost Transactions: Celo's fee structure is intentionally minimal, particularly for cross-border payments, making it ideal for users who may not have traditional banking options. This focus on accessibility aligns with Celo's mission to bring blockchain technology to underserved communities.

Applicable Fees:

Transaction Fees: Fees are calculated based on gas usage, with a maximum gas limit set per transaction. This limit protects users from excessive costs, while the option to pay in multiple currencies enhances flexibility.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Hedera Hashgraph incentivizes network participation through transaction fees and staking rewards, with a structured and predictable fee model designed for enterprise use.

Incentive Mechanisms:

- 1. Staking Rewards for Nodes:
 - HBAR Rewards for Node Operators: Node operators earn HBAR rewards for providing network security and processing transactions, incentivizing them to act honestly and support network stability.
 - User Staking: HBAR holders can stake their tokens to support nodes. Staking rewards offer an additional incentive for token holders to engage in network operations, although the structure may evolve with network growth.
- 2. Service-Based Node Rewards:
 - Nodes receive rewards based on specific services they provide to the network, such as:
 - Consensus Services: Reaching consensus and maintaining transaction order.
 - File Storage: Storing data on the Hedera network.
 - Smart Contract Processing: Supporting contract executions for decentralized applications.

Applicable Fees:

- 1. Predictable Transaction Fees: Hedera's fee structure is fixed and predictable, ensuring transparent costs for users and appealing to enterprise-grade applications. Transaction fees are paid in HBAR and are designed to be stable, making it easier for businesses to plan for usage costs.
- 2. Fee Allocation: All transaction fees collected in HBAR are distributed to network nodes as rewards, reinforcing their role in maintaining network integrity and processing transactions efficiently.

Linea's incentive model aligns validator performance and network security with user needs for low-cost, efficient transaction processing.

Incentive Mechanisms:

Validator Rewards: Validators earn rewards from transaction fees for their role in processing transactions and submitting aggregated proofs to the Ethereum mainnet.

Applicable Fees:

- Transaction Fees: Users pay transaction fees in the network's native token. These fees cover the costs of executing transactions on the Layer 2 network and submitting proofs to the Ethereum mainnet.
- Cost Efficiency: zk-Rollups significantly reduce transaction fees compared to Ethereum mainnet transactions by batching multiple transactions into a single proof, making Linea an economical solution for scalable dApps.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize participation.

Incentive Mechanisms to Secure Transactions:

- 1. Staking Rewards:
 - Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5% annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators propose blocks, validate transactions, and receive a share of these rewards based on their staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad participation.
- 2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and improve the chances of being selected to validate transactions. Delegators share in the validator's rewards based on their delegated tokens, incentivizing users to support reliable validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting dishonestly. The slashing mechanism enforces security by deducting a portion of their staked tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total circulating supply, introducing a potential deflationary effect over time. Validators also receive a portion of transaction fees as additional rewards, providing an ongoing incentive for network maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest is distributed to validators as compensation for their work. The burning mechanism helps maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging efficient use of resources and preventing spam attacks.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

- 1. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering and batching transactions offchain. They play a critical role in maintaining the efficiency and speed of the network.
 - Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize sequencers to process transactions quickly and accurately.
- 2. Validators and Fraud Proofs:
 - Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default. This allows for quick transaction finality.
 - Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by submitting a fraud proof during a specified challenge period. This mechanism ensures that invalid transactions are detected and reverted.
 - Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent transactions. This incentivizes participants to actively monitor the network for invalid transactions, thereby enhancing security.
- 3. Economic Penalties:
 - Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully challenged, they face economic penalties, such as losing a portion of their staked collateral. This discourages dishonest behavior.
 - Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

- 1. Transaction Fees:
 - Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are generally lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the overall cost per transaction, making it more economical for users.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum.
- Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions.
- 3. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC

tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

Statemint is a common-good parachain on the Polkadot and Kusama networks, designed to enable efficient asset management while benefiting from Polkadot's shared security and governance model.

Incentive Mechanisms:

- Relay Chain Validators: Validators securing the Polkadot Relay Chain are indirectly incentivized through block rewards and transaction fees collected across all parachains, including Statemint. This ensures the stability and security of the network without requiring Statemint-specific rewards.
- Collator Compensation: Collator nodes aggregate transactions and produce blocks for Statemint. They may be compensated through external arrangements, such as subsidies or user-driven incentives, depending on governance decisions and usage patterns.
- Governance Participation: Polkadot (DOT) and Kusama (KSM) token holders influence Statemint's operations, such as fee adjustments and protocol upgrades, through on-chain governance mechanisms.

Applicable Fees:

- Transaction Fees: Users pay transaction fees in the native tokens of the Relay Chain, DOT for Polkadot or KSM for Kusama. These fees are distributed to Relay Chain validators to support the network's maintenance.
- Asset Creation and Transfer Fees: Fees apply for creating new assets and transferring them on the Statemint chain. These fees help prevent spam and ensure efficient use of network resources.
- Governance-Defined Fee Adjustments: The Statemint parachain's fees can be adjusted through governance proposals, enabling the community to adapt costs to network conditions.

Stellar's consensus mechanism, the Stellar Consensus Protocol (SCP), is designed to achieve decentralized and secure transaction validation through a federated Byzantine agreement (FBA) model. Unlike Proof of Work (PoW) or Proof of Stake (PoS) systems, Stellar does not rely on direct economic incentives like mining rewards. Instead, it ensures network security and transaction validation through intrinsic network mechanisms and transaction fees.

Incentive Mechanisms:

1. Quorum Slices and Trust:

- Quorum Slices: Each node in the Stellar network selects other nodes it trusts to form a quorum slice. Consensus is achieved through the intersection of these slices, creating a robust and decentralized trust network.
- Federated Voting: Nodes communicate their votes within their quorum slices, and through multiple rounds of federated voting, they agree on the transaction state. This process ensures that even if some nodes are compromised, the network can still achieve consensus securely.
- 2. Intrinsic Value and Participation:
 - Network Value: The intrinsic value of participating in a secure, efficient, and reliable payment network incentivizes nodes to act honestly and maintain network security. Organizations and individuals running nodes benefit from the network's functionality and the ability to facilitate transactions.
 - Decentralization: By allowing nodes to choose their own quorum slices, Stellar promotes decentralization, reducing the risk of central points of failure and making the network more resilient to attacks. Fees on the Stellar Blockchain

- 3. Transaction Fees:
 - Flat Fee Structure: Each transaction on the Stellar network incurs a flat fee of 0.00001 XLM (known as a base fee). This low and predictable fee structure makes Stellar suitable for micropayments and high-volume transactions.
 - Spam Prevention: The transaction fee serves as a deterrent against spam attacks. By requiring a small fee for each transaction, Stellar ensures that the network remains efficient and that resources are not wasted on processing malicious or frivolous transactions.
- 4. Operational Costs:
 - Minimal Fees: The minimal transaction fees on Stellar not only prevent spam but also cover the operational costs of running the network. This ensures that the network can sustain itself without placing a significant financial burden on users.
- 5. Reserve Requirements:
 - Account Reserves: To create a new account on the Stellar network, a minimum balance of 1 XLM is required. This reserve requirement prevents the creation of an excessive number of accounts, further protecting the network from spam and ensuring efficient resource usage.
 - Trustline and Offer Reserves: Additional reserve requirements exist for creating trustlines and offers on the Stellar decentralized exchange (DEX). These reserves help maintain network integrity and prevent abuse.

Security and Economic Incentives:

1. Validators:

Validators stake SUI tokens to participate in the consensus process. They earn rewards for validating transactions and securing the network.

2. Slashing:

Validators can be penalized (slashed) for malicious behavior, such as double-signing or failing to properly validate transactions. This helps maintain network security and incentivizes honest behavior.

3. Delegation:

Token holders can delegate their SUI tokens to trusted validators. In return, they share in the rewards earned by validators. This encourages widespread participation in securing the network.

Fees on the SUI Blockchain:

- 1. Transaction Fees:
 - Users pay transaction fees to validators for processing and confirming transactions. These fees are calculated based on the computational resources required to process the transaction. Fees are paid in SUI tokens, which is the native cryptocurrency of the Sui blockchain.
- 2. Dynamic Fee Model:
 - The transaction fees on Sui are dynamic, meaning they adjust based on network demand and the complexity of the transactions being processed.

zkSync incentivizes network participants through a streamlined fee structure and role-based rewards, designed to ensure security, scalability, and usability for both users and validators.

Incentive Mechanism:

- Validator Rewards: Validators, who generate validity proofs and secure the network, are compensated through transaction fees paid by users. Their role ensures that batches of transactions are processed efficiently and accurately.

- Sequencer Incentives: Sequencers are responsible for bundling and ordering transactions offchain. They earn a share of the transaction fees for maintaining network performance and fast processing times.
- Ecosystem Growth Rewards: zkSync allocates resources to incentivize developers and projects building on its platform, fostering a robust ecosystem of dApps, DeFi protocols, and NFT marketplaces.

Applicable Fees:

- Transaction Fees: Users pay fees in Ether (ETH) for transactions on zkSync. These fees are significantly lower than Ethereum Layer 1 fees, as zkSync processes transactions off-chain and submits only aggregated proofs to the Ethereum mainnet.
- Fee Model: Fees are dynamically calculated based on the complexity of transactions (e.g., token transfers, smart contract interactions) and the cost of submitting validity proofs to Ethereum.
- Scalability Benefits: zkSync's efficient rollup architecture reduces gas fees for users while ensuring that validators and sequencers are appropriately compensated for their roles.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) algorand, aptos_coin, arbitrum, avalanche, base, celo, ethereum, hedera_hbar, linea, near_protocol, optimism, polygon, solana, statemint, stellar, sui, zksync is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Algorand

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Algorand	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	420961.80000	kWh/a

Qualitative information

S.4 Consensus Mechanism

The Algorand blockchain utilizes a consensus mechanism termed Pure Proof-of-Stake (PPoS). Consensus, in this context, describes the method by which blocks are selected and appended to the blockchain. Algorand employs a verifiable random function (VRF) to select leaders who propose blocks for each round.

Upon block proposal, a pseudorandomly selected committee of voters is chosen to evaluate the proposal. If a supermajority of these votes are from honest participants, the block is certified. What makes this algorithm a Pure Proof of Stake is that users are chosen for committees based on the number of algos in their accounts. This system leverages random committee selection to maintain high performance and inclusivity within the network.

The consensus process involves three stages:

- 1. Propose: A leader proposes a new block.
- 2. Soft Vote: A committee of voters assesses the proposed block.
- 3. Certify Vote: Another committee certifies the block if it meets the required honesty threshold.

S.5 Incentive Mechanisms and Applicable Fees

Algorand's consensus mechanism, Pure Proof-of-Stake (PPoS), relies on the participation of token holders (stakers) to ensure the network's security and integrity:

- 1. Participation Rewards:
 - Staking Rewards: Users who participate in the consensus protocol by staking their ALGO tokens earn rewards. These rewards are distributed periodically and are proportional to the amount of ALGO staked. This incentivizes users to hold and stake their tokens, contributing to network security and stability.
 - Node Participation Rewards: Validators, also known as participation nodes, are responsible for proposing and voting on blocks. These nodes receive additional rewards for their active role in maintaining the network.
- 2. Transaction Fees:
 - Flat Fee Model: Algorand employs a flat fee model for transactions, which ensures predictability and simplicity. The standard transaction fee on Algorand is very low (around 0.001 ALGO per transaction). These fees are paid by users to have their transactions processed and included in a block.
 - Fee Redistribution: Collected transaction fees are redistributed to participants in the network. This includes stakers and validators, further incentivizing their participation and ensuring continuous network operation.
- 3. Economic Security:
 - Token Locking: To participate in the consensus mechanism, users must lock up their ALGO tokens. This economic stake acts as a security deposit that can be slashed (forfeited) if the participant acts maliciously. The potential loss of staked tokens discourages dishonest behavior and helps maintain network integrity.

Fees on the Algorand Blockchain

1. Transaction Fees:

Algorand uses a flat transaction fee model. The current standard fee is 0.001 ALGO per transaction. This fee is minimal compared to other blockchain networks, ensuring affordability and accessibility.

2. Smart Contract Execution Fees:

Fees for executing smart contracts on Algorand are also designed to be low. These fees are based on the computational resources required to execute the contract, ensuring that users are only charged for the actual resources they consume.

3. Asset Creation Fees:

Creating new assets (tokens) on the Algorand blockchain involves a small fee. This fee is necessary to prevent spam and ensure that only genuine assets are created and maintained on the network.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Sui

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Sui	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	385264.80000	kWh/a

Qualitative information

S.4 Consensus Mechanism

The Sui blockchain utilizes a Byzantine Fault Tolerant (BFT) consensus mechanism optimized for high throughput and low latency.

Core Components:

- 1. Mysten Consensus Protocol:
 - The Sui consensus is based on Mysten Labs' Byzantine Fault Tolerance (BFT) protocol, which builds on principles of Practical Byzantine Fault Tolerance (pBFT) but introduces key optimizations for performance.
 - Leaderless Design: Unlike traditional BFT models, Sui does not rely on a single leader to propose blocks. Validators can propose blocks simultaneously, increasing efficiency and reducing the risks associated with leader failure or attacks.
 - Parallel Processing: Transactions can be processed in parallel, maximizing network throughput by utilizing multiple cores and threads. This allows for faster confirmation of transactions and high scalability.
- 2. Transaction Validation:
 - Validators are responsible for receiving transaction requests from clients and processing them. Each transaction includes digital signatures and must meet the network's rules to be considered valid. Validators can propose transactions simultaneously, unlike many other networks that require a sequential, leader-driven process.
- 3. Optimistic Execution:
 - Optimistic Consensus: Sui allows validators to process certain non-contentious, independent transactions without waiting for full consensus. This is known as optimistic execution and helps reduce transaction latency for many use cases, allowing for fast finality in most cases.
- 4. Finality and Latency:
 - The system only requires three rounds of communication between validators to finalize a transaction. This results in low-latency consensus and rapid transaction confirmation times, achieving scalability while maintaining security.
- 5.Fault Tolerance:
 - The system can tolerate up to one-third of validators being faulty or malicious without compromising the integrity of the consensus process.

S.5 Incentive Mechanisms and Applicable Fees

Security and Economic Incentives:

- 1. Validators:
 - Validators stake SUI tokens to participate in the consensus process. They earn rewards for validating transactions and securing the network.
- 2. Slashing:

Validators can be penalized (slashed) for malicious behavior, such as double-signing or failing to properly validate transactions. This helps maintain network security and incentivizes honest behavior.

3. Delegation:

Token holders can delegate their SUI tokens to trusted validators. In return, they share in the rewards earned by validators. This encourages widespread participation in securing the network.

Fees on the SUI Blockchain:

- 1. Transaction Fees:
 - Users pay transaction fees to validators for processing and confirming transactions. These fees are calculated based on the computational resources required to process the transaction. Fees are paid in SUI tokens, which is the native cryptocurrency of the Sui blockchain.
- 2. Dynamic Fee Model:
 - The transaction fees on Sui are dynamic, meaning they adjust based on network demand and the complexity of the transactions being processed.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) sui is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Ontology

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Ontology	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/

Field	Value	Unit
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	349261.20000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Ontology operates on a Verifiable Byzantine Fault Tolerance (VBFT) consensus mechanism, which combines Proof of Stake (PoS), Verifiable Random Function (VRF), and Byzantine Fault Tolerance (BFT) to deliver a secure and efficient consensus process.

Core Components:

- VBFT Hybrid Consensus: Combines PoS for staking, VRF for randomness in node selection, and BFT for transaction finality, ensuring both security and efficiency in the network.
- Node Selection via VRF: A Verifiable Random Function ensures randomness in selecting consensus nodes, making it difficult for adversaries to predict or manipulate the selection process.
- Stake-Based Voting: Nodes with higher stakes have greater voting power in the consensus process, aligning their incentives with the network's security and stability.

S.5 Incentive Mechanisms and Applicable Fees

Ontology employs a dual-token system and a comprehensive fee-sharing model to incentivize participation and ensure the network's sustainability.

Incentive Mechanisms:

- Staking Rewards: ONT holders can stake their tokens to earn ONG rewards. This incentivizes long-term commitment and active participation in governance and network stability.
- Governance Participation: ONT holders have voting rights in network governance decisions, enabling them to influence protocol upgrades and other critical parameters.

Applicable Fees:

- Transaction Fees: Users pay transaction fees in ONG for transactions and smart contract executions. Fees are relatively low, making Ontology suitable for microtransactions and complex applications.
- Fee-Sharing Model: A portion of transaction fees is distributed to stakers and node operators, aligning the interests of all network participants and supporting the ecosystem's sustainability.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ontology is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number

of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Ripple XRP

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Ripple XRP	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	299631.01980	kWh/a

Qualitative information

S.4 Consensus Mechanism

Ripple XRP is present on the following networks: Binance Smart Chain, Klaytn, Ripple.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

🕞 Finst

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

Klaytn employs a modified Istanbul Byzantine Fault Tolerance (IBFT) consensus algorithm, a variant of Proof of Authority (PoA), enabling high performance and immediate transaction finality.

Core Components of Klaytn's Consensus:

1. Modified IBFT Algorithm:

Immediate Transaction Finality: Klaytn's IBFT algorithm ensures that once a block is validated, it is immediately final and cannot be reversed. This guarantees that transactions are quickly settled, providing a secure and efficient user experience.

- 2. Klaytn Governance Council:
 - Council-Driven Governance: The Klaytn network is governed by the Klaytn Governance Council, a consortium of global organizations responsible for selecting and maintaining Consensus Nodes (CNs). This council-based governance model balances decentralization with performance and ensures transparency in decision-making.
 - Two-Thirds Majority for Finalization: For a block to be finalized, it must receive signatures from more than two-thirds of the council members, ensuring broad consensus and network security.
- 3. Three-Tiered Node Architecture:
 - Consensus Nodes (CNs): The selected validators responsible for producing and validating blocks. CNs are at the core of the network's security and stability.
 - Proxy Nodes (PNs): Act as intermediaries, relaying data between CNs and the broader network, which helps distribute network traffic and improve accessibility.
 - Endpoint Nodes (ENs): Interface directly with end-users, facilitating transactions, executing smart contracts, and serving as user access points to the Klaytn network.

The Ripple blockchain, specifically the XRP Ledger (XRPL), uses a consensus mechanism known as the Ripple Protocol Consensus Algorithm (RPCA). It differs from Proof of Work (PoW) and Proof of Stake (PoS) as it doesn't rely on mining or staking but instead leverages trusted validators in a Federated Byzantine Agreement (FBA) model.

Core Concepts:

1. Validators and Unique Node Lists (UNL): Validators are trusted nodes in the network that validate transactions and propose new ledger updates. Each node maintains a list of trusted validators known as its Unique Node List (UNL). Consensus is achieved when 80% of the validators in a

node's UNL agree on the validity of a transaction or block. This ensures high levels of security and decentralization.

2. Transaction Ordering and Validation: Transactions are broadcast to validators, and once 80% of the validators agree, the transaction is considered confirmed. Each ledger in the XRPL contains transaction data, and validators ensure the validity and proper ordering of these transactions.

Consensus Process:

- 1. Proposal Phase: Validators propose new transactions to be added to the ledger.
- 2. Validation Phase: Validators vote on proposed transactions by comparing them to their UNL. Consensus is achieved when 80% of validators agree.
- 3. Finalization: Once consensus is reached, the transactions are written into the new ledger, making them irreversible and final.

S.5 Incentive Mechanisms and Applicable Fees

Ripple XRP is present on the following networks: Binance Smart Chain, Klaytn, Ripple.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

Klaytn's incentive structure includes block rewards and transaction fees distributed to Consensus Nodes (CNs) and various network funds, fostering network security, sustainability, and community development.

Incentive Mechanisms:

- 1. Rewards for Consensus Nodes (CNs):
 - Fixed Block Rewards: CNs earn fixed rewards in KLAY tokens for validating and producing blocks. This predictable income incentivizes CNs to maintain active participation and secure the network.
 - Transaction Fees: Users pay transaction fees in KLAY tokens, which are collected by the network and distributed among the CNs as additional rewards, further supporting network security and stability.
- 2. Block Reward Distribution: Governance Council (GC) Reward:
 - GC Block Proposer Reward: 10% of the block reward goes to the specific CN that proposed the block, incentivizing continuous active participation.
 - GC Staking Award: 40% of the block reward is distributed among all Governance Council members who stake KLAY, promoting network security by rewarding staked tokens.
 - Klaytn Community Fund (KCF): 30% of each block reward is allocated to the KCF to support community development, dApp creation, and overall ecosystem growth.
 - Klaytn Foundation Fund (KFF): 20% of the block reward goes to the KFF, providing resources for long-term network sustainability and future development initiatives.
- 3. Transaction Fees:
 - User Fees for Network Interaction: Users pay fees in KLAY based on gas usage and gas price for transactions. These fees are then distributed to CNs, incentivizing efficient transaction processing and active participation.

Applicable Fees:

Transaction Fees: Transaction fees on Klaytn are paid in KLAY and calculated based on gas consumption. These fees support network maintenance by compensating validators and fostering economic sustainability.

The Ripple XRP blockchain uses a unique incentive structure that differs from traditional Proof of Work (PoW) or Proof of Stake (PoS) systems, focusing on its Ripple Protocol Consensus Algorithm (RPCA).

Incentive Mechanisms to Secure Transactions:

- 1. Validators: Validators on the Ripple network are not directly compensated with rewards like in PoW/PoS models. Instead, they are incentivized by the utility and stability of the network, particularly financial institutions that benefit from Ripple's efficiency in cross-border payments.
- 2. No Mining: Since Ripple does not use mining, it eliminates the need for energy-intensive computations, contributing to fast transaction speeds and scalability.

Fees on the Ripple XRP Blockchain:

- 1. Transaction Fees: Ripple charges minimal transaction fees (typically fractions of an XRP, known as \drops") for each transaction. The purpose of these fees is to prevent network spam and overload.
- 2. Burn Mechanism: A portion of each transaction fee is burned, meaning it's permanently removed from circulation. This reduces the overall supply of XRP over time, contributing to potential long-term value stability.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, klaytn is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Tezos

\$

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Tezos	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	282247.64692	kWh/a

Qualitative information

S.4 Consensus Mechanism

Tezos is present on the following networks: Binance Smart Chain, Tezos.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously.

Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.

- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

Tezos operates on a Liquid Proof of Stake (LPoS) consensus mechanism, which combines flexibility in staking participation with an on-chain governance model.

Core Components:

Liquid Proof of Stake (LPoS) Tezos allows token holders to participate in staking by either directly staking their tokens or delegating them to a validator (known as a baker) without transferring ownership. Validators (bakers) are responsible for creating new blocks (baking) and endorsing other blocks for validation. Bakers and Endorsers Bakers are selected based on the amount of XTZ (Tezos tokens) staked or delegated to them. The more XTZ staked, the higher the probability of being chosen to bake or endorse blocks. Endorsers are randomly selected from a pool of bakers to validate and approve blocks baked by other bakers. This additional validation enhances network security. Self-Amendment and Governance Tezos's unique governance model allows token holders to propose, vote on, and implement network upgrades without requiring hard forks. This self-amendment protocol enables Tezos to evolve based on community and developer input, making it highly adaptable and flexible.

S.5 Incentive Mechanisms and Applicable Fees

Tezos is present on the following networks: Binance Smart Chain, Tezos.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

Tezos incentivizes network participation and security through baking rewards, transaction fees, and an inflationary reward model.

Incentive Mechanisms:

Rewards for Baking and Endorsing Bakers receive XTZ rewards for baking new blocks. Endorsers, who validate and approve blocks baked by others, are also rewarded in XTZ. These rewards encourage active participation and help secure the network. Delegation Incentives XTZ holders who do not wish to bake can delegate their tokens to a baker, earning a share of the baker's rewards without directly participating. This delegation option broadens participation, making it accessible to more users, thereby enhancing overall network security. Security Deposit Requirement Bakers are required to post a bond (security deposit) in XTZ to bake blocks, which is held as collateral to prevent dishonest actions. If a baker acts maliciously, they risk forfeiting this bond, creating a disincentive for bad behavior and aligning bakers' interests with network integrity.

Applicable Fees:

Transaction Fees Users pay transaction fees in XTZ for activities such as transferring funds and interacting with smart contracts. These fees are awarded to bakers and endorsers, providing them with an additional incentive to validate and secure the network. Inflationary Reward Model Tezos has an inflationary reward system, where new XTZ tokens are periodically created and distributed as rewards to bakers and endorsers. This model encourages continuous participation

🌈 Finst

but gradually increases the XTZ supply, balancing network security and token availability over time.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

The following sources where used: tzStats

Aptos Coin

(])

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Aptos Coin	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	262800.00000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Aptos utilizes a Proof-of-Stake approach combined with a BFT consensus protocol to ensure high throughput, low latency, and secure transaction processing.

Core Components:

- Parallel Execution: Transactions are processed concurrently using Block-STM, a parallel execution engine, enabling high performance and scalability.
- Leader-Based BFT: A leader is selected among validators to propose blocks, while others validate and finalize transactions.
- Dynamic Validator Rotation: Validators are rotated regularly, enhancing decentralization and preventing collusion.
- Instant Finality: Transactions achieve finality once validated, ensuring that they are irreversible.

S.5 Incentive Mechanisms and Applicable Fees

Incentive Mechanism:

- Validator Rewards: Validators earn rewards in APT tokens for validating transactions and producing blocks. Rewards are distributed proportionally based on the stake of validators and their delegators.
- Delegator Participation: APT token holders can delegate their tokens to validators, earning a share of the staking rewards without running their own nodes.
- Slashing Mechanism: Validators face penalties, such as losing staked tokens, for malicious actions or prolonged inactivity, ensuring accountability and network security.

Applicable Fees:

- Transaction Fees: Users pay transaction fees in APT tokens for sending transactions and interacting with smart contracts.
- Dynamic Fee Adjustment: Fees are dynamically adjusted based on network activity and resource usage, ensuring cost efficiency and preventing congestion.
- Fee Distribution: Transaction fees are distributed among validators and delegators, providing an additional incentive for network participation.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are

assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) aptos_coin is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Injective Token

Ø

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Injective Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	237142.60475	kWh/a

Qualitative information

S.4 Consensus Mechanism

Injective Token is present on the following networks: Binance Smart Chain, Cosmos, Ethereum, Injective, Osmosis.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of

being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.

- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The Cosmos network uses the Cosmos SDK, a modular framework that enables developers to build custom, application-specific blockchains. Cosmos SDK chains rely on Tendermint Core, a Byzantine Fault Tolerant (BFT) Proof of Stake (PoS) consensus engine that supports interoperability and fast transaction finality.

Core Components:

- 1. Tendermint BFT Consensus with Proof of Stake:
 - Validator Selection: Cosmos validators are selected based on the amount of ATOM they stake or receive from delegators. These validators participate in block proposal and validation through a two-thirds majority voting system.
 - Security Threshold: Tendermint BFT ensures network security as long as fewer than one-third of validators act maliciously.
- 2. Modular Cosmos SDK Framework:
 - Inter-Blockchain Communication (IBC): The Cosmos SDK supports IBC, allowing seamless interoperability between Cosmos-based blockchains.
 - Application Blockchain Interface (ABCI): This interface separates the consensus layer from the application layer, enabling developers to implement custom logic without modifying the consensus engine.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Injective operates on a Tendermint-based Proof of Stake (PoS) consensus model, ensuring high throughput and immediate transaction finality.

Core Components:

- Tendermint-based Proof of Stake (PoS):

Ensures instant transaction finality and supports efficient block production for high-speed transactions.

- Validator Selection:

Validators are chosen based on the amount of INJ tokens staked, considering both self-staked and delegated tokens, to maintain a decentralized network.

- Delegation:

INJ holders can delegate their tokens to validators, earning a share of staking rewards while participating in network governance.

- Instant Finality:

The Tendermint consensus mechanism provides immediate finality, ensuring transactions cannot be reversed once validated.

Osmosis operates on a Proof of Stake (PoS) consensus mechanism, leveraging the Cosmos SDK and Tendermint Core to provide secure, decentralized, and scalable transaction processing.

Core Components:

- Proof of Stake (PoS): Validators are chosen based on the amount of OSMO tokens they stake or are delegated by other token holders. Validators are responsible for validating transactions, producing blocks, and maintaining network security.
- Cosmos SDK and Tendermint Core: Osmosis uses Tendermint Core for Byzantine Fault Tolerant (BFT) consensus, ensuring fast finality and resistance to attacks as long as less than one-third of validators are malicious.
- Decentralized Governance: OSMO token holders can participate in governance by voting on protocol upgrades and network parameters, fostering a community-driven approach to network development.

S.5 Incentive Mechanisms and Applicable Fees

Injective Token is present on the following networks: Binance Smart Chain, Cosmos, Ethereum, Injective, Osmosis.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The Cosmos network incentivizes both validators and delegators to secure the network through staking rewards, funded by transaction fees and newly minted ATOM.

Incentive Mechanisms:

1. Staking Rewards for Validators and Delegators:

ATOM Rewards: Validators earn staking rewards in ATOM tokens for participating in consensus, with rewards shared with delegators who stake ATOM through delegation.

2. Slashing for Accountability:

Penalties for Misconduct: Validators who act maliciously, such as double-signing or staying offline, face slashing penalties, which remove a portion of their staked ATOM. Delegators may also

experience slashing if their chosen validator is penalized, encouraging careful selection of trustworthy validators.

Applicable Fees:

- 1. Transaction Fees:
 - User-Paid Fees in ATOM: All transactions on the Cosmos Hub incur fees paid in ATOM, compensating validators for transaction processing and helping to prevent network spam.
- 2. Customizable Fee Model:

Custom Token Fees: Cosmos SDK allows individual chains to define their own transaction fees in tokens other than ATOM, supporting varied application requirements within the ecosystem.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Injective incentivizes network participation through staking rewards and a unique transaction fee model that supports long-term value for INJ tokens.

Incentive Mechanisms:

Staking Rewards:

INJ holders earn rewards for staking their tokens, encouraging active participation in securing the network.

- Validator Rewards:
 - Validators receive staking rewards and transaction fees for processing transactions and maintaining network security.

Applicable Fees:

Transaction Fees:

Users pay fees in INJ tokens for network transactions, including smart contract execution and trading.

Fee Structure:

A portion of transaction fees is burned via a weekly on-chain auction, reducing the overall supply of INJ tokens and supporting a deflationary tokenomics model.

Osmosis incentivizes validators, delegators, and liquidity providers through a combination of staking rewards, transaction fees, and liquidity incentives.

Incentive Mechanisms:

- Validator Rewards: Validators earn rewards from transaction fees and block rewards, distributed in OSMO tokens, for their role in securing the network and processing transactions. Delegators who stake their OSMO tokens with validators receive a share of these rewards.
- Liquidity Provider Rewards: Users providing liquidity to Osmosis pools earn swap fees and may receive additional incentives in the form of OSMO tokens to encourage liquidity provision.

- Superfluid Staking: Liquidity providers can participate in superfluid staking, staking a portion of their OSMO tokens within liquidity pools. This mechanism allows users to earn staking rewards while maintaining liquidity in the pools

Applicable Fees:

Transaction Fees: Users pay transaction fees in OSMO tokens for network activities, including swaps, staking, and governance participation. These fees are distributed to validators and delegators, incentivizing their continued participation and support for network security.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. Due to the structure of this network, it is not only the mainnet that is responsible for energy consumption. In order to calculate the structure adequately, a proportion of the energy consumption of the connected network, cosmos, must also be taken into account, because the connected network is also responsible for security. This proportion is determined on the basis of gas consumption. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, cosmos, ethereum, osmosis is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

KAVA

K

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/

Field	Value	Unit
S.3 Name of the crypto-asset	KAVA	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	236782.80000	kWh/a

Qualitative information

S.4 Consensus Mechanism

KAVA is present on the following networks: Binance Beacon Chain, Ethereum, Kava, Osmosis, Polygon.

Binance Beacon Chain operated on a Delegated Proof of Stake (DPoS) consensus mechanism before its operations were discontinued in fall 2024 and its migration to Binance Smart Chain; validators were elected by token holders through staking and voting, limiting active participation to a manageable number of nodes while maintaining decentralization; validators were selected based on the staking weight of their delegators, ensuring stakeholder interests were proportionally represented in the validation process; regular validator rotation was implemented to promote fairness and decentralization by allowing multiple participants to contribute to the network; the system was designed to tolerate some degree of validator failures while maintaining the network's operational integrity, ensuring resilience.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Kava employs the Tendermint Core consensus engine with a Proof of Stake (PoS) model, ensuring security, scalability, and decentralized decision-making.

Core Components:

- Tendermint Core (PBFT): A Practical Byzantine Fault Tolerance-based consensus engine provides fast block finality and ensures consistent transaction validation.
- Proof of Stake (PoS): Validators are selected based on the amount of KAVA tokens staked, with the top 100 nodes by bonded stake responsible for validating blocks.
- Validator Selection and Accountability: A slashing mechanism penalizes validators for malicious actions like double-signing or extended downtime, encouraging honest and reliable participation.

Osmosis operates on a Proof of Stake (PoS) consensus mechanism, leveraging the Cosmos SDK and Tendermint Core to provide secure, decentralized, and scalable transaction processing.

Core Components:

- Proof of Stake (PoS): Validators are chosen based on the amount of OSMO tokens they stake or are delegated by other token holders. Validators are responsible for validating transactions, producing blocks, and maintaining network security.
- Cosmos SDK and Tendermint Core: Osmosis uses Tendermint Core for Byzantine Fault Tolerant (BFT) consensus, ensuring fast finality and resistance to attacks as long as less than one-third of validators are malicious.
- Decentralized Governance: OSMO token holders can participate in governance by voting on protocol upgrades and network parameters, fostering a community-driven approach to network development.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.

- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

KAVA is present on the following networks: Binance Beacon Chain, Ethereum, Kava, Osmosis, Polygon.

The Binance Beacon Chain incentivized validators and ensured fee transparency before its migration to Binance Smart Chain; validators were rewarded solely through transaction fees, with no block rewards provided, aligning incentives with network usage and transaction volume; transaction fees were calculated and displayed upfront, ensuring clarity for users and promoting trust in the fee structure; a portion of transaction fees collected in BNB was burned, reducing the overall token supply and contributing to a deflationary economic model.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Kava incentivizes network security and active participation through rewards and an inflationary model, aligning stakeholders' interests.

Incentive Mechanisms:

Validator Rewards:

Validators earn rewards in KAVA tokens from block rewards and transaction fees, compensating them for securing the network and processing transactions.

Staking Rewards:

KAVA holders can delegate their tokens to validators to earn a share of rewards while participating in network governance.

Applicable Fees:

Transaction Fees:

Users pay fees in KAVA tokens for transactions, which are distributed among validators and delegators, supporting network maintenance.

Inflation Mechanism:

New KAVA tokens are minted to fund ecosystem initiatives like Kava Rise, which supports decentralization, security, and ecosystem stability.

Osmosis incentivizes validators, delegators, and liquidity providers through a combination of staking rewards, transaction fees, and liquidity incentives.

Incentive Mechanisms:

- Validator Rewards: Validators earn rewards from transaction fees and block rewards, distributed in OSMO tokens, for their role in securing the network and processing transactions. Delegators who stake their OSMO tokens with validators receive a share of these rewards.
- Liquidity Provider Rewards: Users providing liquidity to Osmosis pools earn swap fees and may receive additional incentives in the form of OSMO tokens to encourage liquidity provision.
- Superfluid Staking: Liquidity providers can participate in superfluid staking, staking a portion of their OSMO tokens within liquidity pools. This mechanism allows users to earn staking rewards while maintaining liquidity in the pools

Applicable Fees:

Transaction Fees: Users pay transaction fees in OSMO tokens for network activities, including swaps, staking, and governance participation. These fees are distributed to validators and delegators, incentivizing their continued participation and support for network security.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
- Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.

- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_beacon_chain, ethereum, osmosis, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are

verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

SEI

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	SEI	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	210345.12000	kWh/a

Qualitative information

S.4 Consensus Mechanism

SEI is present on the following networks: Osmosis, Sei.

Osmosis operates on a Proof of Stake (PoS) consensus mechanism, leveraging the Cosmos SDK and Tendermint Core to provide secure, decentralized, and scalable transaction processing.

Core Components:

- Proof of Stake (PoS): Validators are chosen based on the amount of OSMO tokens they stake or are delegated by other token holders. Validators are responsible for validating transactions, producing blocks, and maintaining network security.
- Cosmos SDK and Tendermint Core: Osmosis uses Tendermint Core for Byzantine Fault Tolerant (BFT) consensus, ensuring fast finality and resistance to attacks as long as less than one-third of validators are malicious.
- Decentralized Governance: OSMO token holders can participate in governance by voting on protocol upgrades and network parameters, fostering a community-driven approach to network development.

Sei leverages its Twin-Turbo consensus mechanism, integrating advanced transaction processing techniques with the reliability of Tendermint Core, to achieve high performance and security.

Core Components:

- Twin-Turbo Consensus:

- Optimistic Block Processing: Validators process transactions optimistically, assuming their validity, reducing latency and increasing throughput.
- Intelligent Block Propagation: Compressed block proposals containing transaction hashes enable validators to reconstruct blocks locally, expediting consensus.
- Single Slot Finality: Ensures immediate block finality upon addition, eliminating the need for confirmations and minimizing the risk of chain reorganizations.

- Tendermint Core Integration:

Incorporates Byzantine Fault Tolerance (BFT) to maintain security and resilience, safeguarding the network against malicious actors.

S.5 Incentive Mechanisms and Applicable Fees

SEI is present on the following networks: Osmosis, Sei.

Osmosis incentivizes validators, delegators, and liquidity providers through a combination of staking rewards, transaction fees, and liquidity incentives.

Incentive Mechanisms:

- Validator Rewards: Validators earn rewards from transaction fees and block rewards, distributed in OSMO tokens, for their role in securing the network and processing transactions. Delegators who stake their OSMO tokens with validators receive a share of these rewards.
- Liquidity Provider Rewards: Users providing liquidity to Osmosis pools earn swap fees and may receive additional incentives in the form of OSMO tokens to encourage liquidity provision.
- Superfluid Staking: Liquidity providers can participate in superfluid staking, staking a portion of their OSMO tokens within liquidity pools. This mechanism allows users to earn staking rewards while maintaining liquidity in the pools

Applicable Fees:

Transaction Fees: Users pay transaction fees in OSMO tokens for network activities, including swaps, staking, and governance participation. These fees are distributed to validators and delegators, incentivizing their continued participation and support for network security.

The Sei Network incentivizes participation through staking rewards and a transparent fee structure, supporting its decentralized ecosystem.

Incentive Mechanisms:

- Staking Rewards: Validators and delegators earn SEI tokens as rewards for securing the network through staking, promoting active engagement and long-term commitment.
- Governance Participation: SEI token holders can participate in network governance decisions, influencing protocol upgrades and key changes.

Applicable Fees:

Transaction Fees: Users pay fees in SEI tokens for network transactions. These fees are distributed to validators and delegators as rewards, supporting network operations and security.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital

Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) osmosis is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Cosmos ATOM

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Cosmos ATOM	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	186473.17294	kWh/a

Qualitative information

S.4 Consensus Mechanism

Cosmos ATOM is present on the following networks: Binance Smart Chain, Bitsong, Cosmos, Cronos, Ethereum, Injective, Osmosis.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through

staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.

- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

BitSong operates on a Delegated Proof-of-Stake (DPoS) consensus mechanism. In this model, BTSG token holders delegate their tokens to validators, who are responsible for producing and validating new blocks. The selection of validators is based on the amount of BTSG tokens staked and the duration of staking, which determines their voting power in the network's governance processes.

The Cosmos network uses the Cosmos SDK, a modular framework that enables developers to build custom, application-specific blockchains. Cosmos SDK chains rely on Tendermint Core, a Byzantine Fault Tolerant (BFT) Proof of Stake (PoS) consensus engine that supports interoperability and fast transaction finality.

Core Components:

- 1. Tendermint BFT Consensus with Proof of Stake:
 - Validator Selection: Cosmos validators are selected based on the amount of ATOM they stake or receive from delegators. These validators participate in block proposal and validation through a two-thirds majority voting system.
 - Security Threshold: Tendermint BFT ensures network security as long as fewer than one-third of validators act maliciously.

- 2. Modular Cosmos SDK Framework:
 - Inter-Blockchain Communication (IBC): The Cosmos SDK supports IBC, allowing seamless interoperability between Cosmos-based blockchains.
 - Application Blockchain Interface (ABCI): This interface separates the consensus layer from the application layer, enabling developers to implement custom logic without modifying the consensus engine.

Cronos operates on a Proof of Stake (PoS) model integrated with Tendermint's Byzantine Fault Tolerant (BFT) consensus, designed for decentralization, security, and interoperability. This model enables validators to be selected based on staking power, rewarding them for securing and validating the network.

Core Components:

- Proof of Stake (PoS) with Tendermint BFT Validator Selection: Validators are chosen based on the amount of CRO tokens staked, securing the network and producing blocks.
- Delegation Model: Token holders can delegate their CRO to validators, enabling participation in network security without needing to run a validator node.
- Cosmos SDK and Inter-Blockchain Communication (IBC) Cross-Chain Connectivity: Built on the Cosmos SDK, Cronos enables cross-chain communication, connecting to other Cosmos blockchains and ecosystems such as Ethereum and Binance Smart Chain.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Injective operates on a Tendermint-based Proof of Stake (PoS) consensus model, ensuring high throughput and immediate transaction finality.

Core Components:

- Tendermint-based Proof of Stake (PoS):
 - Ensures instant transaction finality and supports efficient block production for high-speed transactions.
- Validator Selection:

Validators are chosen based on the amount of INJ tokens staked, considering both self-staked and delegated tokens, to maintain a decentralized network.

- Delegation:
 - INJ holders can delegate their tokens to validators, earning a share of staking rewards while participating in network governance.
- Instant Finality:

The Tendermint consensus mechanism provides immediate finality, ensuring transactions cannot be reversed once validated.

Osmosis operates on a Proof of Stake (PoS) consensus mechanism, leveraging the Cosmos SDK and Tendermint Core to provide secure, decentralized, and scalable transaction processing.

Core Components:

- Proof of Stake (PoS): Validators are chosen based on the amount of OSMO tokens they stake or are delegated by other token holders. Validators are responsible for validating transactions, producing blocks, and maintaining network security.
- Cosmos SDK and Tendermint Core: Osmosis uses Tendermint Core for Byzantine Fault Tolerant (BFT) consensus, ensuring fast finality and resistance to attacks as long as less than one-third of validators are malicious.
- Decentralized Governance: OSMO token holders can participate in governance by voting on protocol upgrades and network parameters, fostering a community-driven approach to network development.

S.5 Incentive Mechanisms and Applicable Fees

Cosmos ATOM is present on the following networks: Binance Smart Chain, Bitsong, Cosmos, Cronos, Ethereum, Injective, Osmosis.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The native token, BTSG, serves multiple roles within the BitSong ecosystem, including transaction fee payments, staking, and governance participation. Validators earn rewards from transaction fees and block rewards, with a portion of these rewards distributed to delegators after deducting the validator's commission.

The Cosmos network incentivizes both validators and delegators to secure the network through staking rewards, funded by transaction fees and newly minted ATOM.

Incentive Mechanisms:

- 1. Staking Rewards for Validators and Delegators:
 - ATOM Rewards: Validators earn staking rewards in ATOM tokens for participating in consensus, with rewards shared with delegators who stake ATOM through delegation.
- 2. Slashing for Accountability:

Penalties for Misconduct: Validators who act maliciously, such as double-signing or staying offline, face slashing penalties, which remove a portion of their staked ATOM. Delegators may also experience slashing if their chosen validator is penalized, encouraging careful selection of trustworthy validators.

Applicable Fees:

1. Transaction Fees:

User-Paid Fees in ATOM: All transactions on the Cosmos Hub incur fees paid in ATOM, compensating validators for transaction processing and helping to prevent network spam.

2. Customizable Fee Model:

Custom Token Fees: Cosmos SDK allows individual chains to define their own transaction fees in tokens other than ATOM, supporting varied application requirements within the ecosystem.

Cronos incentivizes validators and delegators with staking rewards and transaction fees, aligning economic incentives with network security and growth.

Incentive Mechanisms:

- Staking Rewards Validators and Delegators: Both groups earn CRO rewards for supporting network security. Delegators earn a portion of the validator rewards, promoting broader network participation.
- Deflationary Mechanism Token Burning: A portion of transaction fees and staking rewards may be periodically burned, reducing CRO supply over time and potentially increasing token value.

Applicable Fees:

- Transaction and Smart Contract Fees Standard Transactions: Users pay CRO for network transactions and dApp interactions, providing a steady income for validators.
- Ethereum-Compatible Gas Fees: Executing Ethereum-compatible smart contracts incurs gas fees, similar to Ethereum, payable in CRO.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Injective incentivizes network participation through staking rewards and a unique transaction fee model that supports long-term value for INJ tokens.

Incentive Mechanisms:

Staking Rewards:

INJ holders earn rewards for staking their tokens, encouraging active participation in securing the network.

Validator Rewards:

Validators receive staking rewards and transaction fees for processing transactions and maintaining network security.

Applicable Fees:

Transaction Fees:

Users pay fees in INJ tokens for network transactions, including smart contract execution and trading.

Fee Structure:

A portion of transaction fees is burned via a weekly on-chain auction, reducing the overall supply of INJ tokens and supporting a deflationary tokenomics model.

Osmosis incentivizes validators, delegators, and liquidity providers through a combination of staking rewards, transaction fees, and liquidity incentives.

Incentive Mechanisms:

- Validator Rewards: Validators earn rewards from transaction fees and block rewards, distributed in OSMO tokens, for their role in securing the network and processing transactions. Delegators who stake their OSMO tokens with validators receive a share of these rewards.
- Liquidity Provider Rewards: Users providing liquidity to Osmosis pools earn swap fees and may receive additional incentives in the form of OSMO tokens to encourage liquidity provision.
- Superfluid Staking: Liquidity providers can participate in superfluid staking, staking a portion of their OSMO tokens within liquidity pools. This mechanism allows users to earn staking rewards while maintaining liquidity in the pools

Applicable Fees:

Transaction Fees: Users pay transaction fees in OSMO tokens for network activities, including swaps, staking, and governance participation. These fees are distributed to validators and delegators, incentivizing their continued participation and support for network security.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, bitsong, cosmos, cronos, ethereum, injective, osmosis is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Flare

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Flare	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	170820.00000	kWh/a

Qualitative information

S.4 Consensus Mechanism

The Flare Blockchain uses a unique consensus mechanism known as Avalanche Consensus combined with a Federated Byzantine Agreement (FBA) model to provide scalability, security, and decentralization. Flare aims to enable interoperability between blockchains by connecting smart contract platforms to non-Turing complete networks like Bitcoin, and this consensus mechanism plays a crucial role in the network's overall operation.

Key Features of Flare's Consensus Mechanism:

- 1. Avalanche Consensus:
 - Scalable and Fast: The Avalanche consensus is designed for high throughput and low latency. It uses a gossip protocol for communication between nodes, which helps achieve consensus faster than traditional consensus mechanisms like Proof-of-Work (PoW) or Proof-of-Stake (PoS). Nodes quickly confirm transaction validity by repeatedly querying other nodes, increasing network speed.
 - Decentralized and Secure: This consensus mechanism doesn't require heavy computational power like PoW, making it more energy-efficient while maintaining robust security.
- 2. Federated Byzantine Agreement (FBA):
 - Federated Nodes: FBA ensures that nodes within the Flare network reach a consensus without needing to rely on a central authority. The network uses a set of trusted "federated" nodes that help maintain consensus, allowing nodes outside the federated set to participate without requiring full trust.
 - Leaderless Consensus: FBA allows for a leaderless and decentralized structure, where each node can validate transactions independently, enhancing both security and decentralization.
- 3. Interoperability: Flare's consensus mechanism is designed to allow cross-chain communication, particularly bridging the gap between Turing-complete smart contract platforms like Ethereum and non-Turing-complete chains like Bitcoin. This makes it possible to bring data and value from non-smart contract chains into the smart contract ecosystem.

S.5 Incentive Mechanisms and Applicable Fees

Flare Network employs a multifaceted incentive mechanism to promote active participation and ensure the network's security and efficiency.

Incentive Mechanisms:

- 1. FTSO Delegation Rewards: Flare Time Series Oracle (FTSO) data providers offer price feeds to the network. Users can delegate their FLR tokens to these providers, earning a share of the rewards based on the accuracy of the data provided. 2. FlareDrops: A portion of FLR tokens is distributed monthly to WFLR holders through FlareDrops. This incentivizes users to hold and utilize WFLR tokens within the ecosystem.
- 3. rFLR Rewards: Reward FLR (rFLR) tokens are distributed monthly to enhance liquidity in Flare's DeFi ecosystem. Users can earn rFLR by participating in various DeFi activities, such as lending or borrowing assets.
- 4. FLR Protocol Emissions: Selected decentralized applications (dApps) launching on Flare receive FLR emissions to incentivize user participation and liquidity provision.

Applicable Fees:

- 1. Transaction Fees: Users pay FLR tokens to execute transactions on the network, compensating validators for processing and confirming transactions.
- 2. Staking Fees: When delegating FLR tokens to FTSO data providers or participating in staking activities, users may incur fees associated with these services.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Zilliqa

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Zilliqa	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	157680.91990	kWh/a

Qualitative information

S.4 Consensus Mechanism

Zilliqa is present on the following networks: Binance Smart Chain, Zilliqa.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The Zilliqa blockchain uses a hybrid consensus mechanism that combines Practical Byzantine Fault Tolerance (pBFT) and Proof of Work (PoW) to ensure high throughput, scalability, and security.

The main components of Zilliqa's consensus mechanism include the following:

1. Sharding:

Zilliqa achieves scalability through sharding, where the network is divided into smaller units called shards. Each shard processes its own set of transactions and smart contracts in parallel, allowing the network to handle a higher volume of transactions.

- 2. Proof of Work (PoW):
 - The PoW mechanism is used for consensus initiation. It is primarily used to secure the network and assign nodes to shards. PoW miners solve computational puzzles to participate in block generation. However, PoW is only used for a short time at the beginning of the consensus process, and the workload is much lower than in traditional PoW systems like Bitcoin. The PoW

mechanism ensures that only nodes with sufficient computational power are selected to participate in the network, reducing the likelihood of Sybil attacks.

- 3. Practical Byzantine Fault Tolerance (pBFT):
- Once the PoW phase is complete and nodes are assigned to shards, pBFT is used to reach consensus within each shard. This is a more energy-efficient consensus algorithm than traditional PoW because it doesn't require miners to perform extensive computations after the initial selection. pBFT ensures finality of blocks and ensures that even if some nodes behave maliciously or fail, the network can still reach an agreement and process transactions correctly. pBFT works by having validators from the shard participate in a consensus process to agree on the state of the blockchain. Validators propose blocks, vote on block validity, and ensure that a consensus is reached before blocks are finalized.
- 4. High Throughput and Low Latency:
 - Combining sharding with the use of PoW and pBFT allows Zilliqa to achieve high throughput and low latency. By processing transactions in parallel across multiple shards, the network can handle thousands of transactions per second, significantly improving scalability compared to traditional blockchain systems.

S.5 Incentive Mechanisms and Applicable Fees

Zilliqa is present on the following networks: Binance Smart Chain, Zilliqa.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The Zilliqa blockchain incentivizes network participants, including miners, validators, and developers, through block rewards, transaction fees, and staking rewards, while its fee model ensures the smooth operation of the network and the maintenance of its scalability and security.

Incentive Mechanism:

1. Mining Rewards (PoW Phase):

Block Rewards:

Miners who perform the Proof of Work (PoW) for the initial consensus phase are rewarded with ZIL tokens for successfully mining a block. This PoW phase is used to assign nodes to different shards.

Transaction Fees:

In addition to block rewards, miners also receive transaction fees for including transactions in the blocks they mine. These fees incentivize miners to prioritize transactions during high demand.

2. Staking Rewards:

Validators in Shards:

After the PoW phase, validators in each shard participate in the consensus process using Practical Byzantine Fault Tolerance (pBFT). Validators who propose or confirm blocks in the pBFT phase earn ZIL tokens as rewards for their participation in securing the network and validating transactions.

Sharding Rewards:

Zilliqa rewards validators in each shard based on their contributions to block finalization and their participation in the consensus mechanism.

- 3. Transaction Fees (Validators and Miners):
 - Transaction Fee Distribution:

Transaction fees are paid by users to have their transactions processed on the Zilliqa network. These fees are collected by the validators who propose the blocks or the miners who participate in the PoW phase.

Prioritization of Fees:

During periods of high network activity, users may need to increase their transaction fees to ensure quicker transaction inclusion. Validators prioritize higher fees to ensure transaction processing.

4. Incentives for Developers:

Smart Contract Deployment: Developers who deploy and maintain smart contracts on the Zilliqa network can also be incentivized through transaction fees generated by the usage of their smart contracts. The more transactions a smart contract processes, the more rewards the contract owner can earn.

Applicable Fees:

1. Transaction Fees:

Fee Calculation:

Transaction fees on Zilliqa are determined based on the size and complexity of the transaction. The fee is typically paid in ZIL tokens, which can fluctuate depending on network demand and transaction complexity.

Fee Rate:

The fee rate adjusts based on network congestion, meaning that higher transaction fees are necessary for quicker processing during periods of high demand. Zilliqa offers tools for users to estimate the proper transaction fee based on current network conditions.

2. Smart Contract Execution Fees:

Execution Costs: For transactions involving smart contracts, fees are calculated based on the computational resources required to execute the contract. These fees are also paid in ZIL tokens and vary depending on the complexity of the contract's execution.

3. Sharding Fees:

Fee to Participate in Shards: Since Zilliqa uses sharding, users may incur additional fees for interacting with specific shards. These fees help maintain the infrastructure for the parallel processing of transactions across the shards.

4. Storage Fees:

Storage of Data: Developers and users who store data on the blockchain, such as smart contracts or tokens, are required to pay storage fees. This helps prevent spam attacks and ensures efficient use of network resources. These fees are typically paid in ZIL tokens.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, zilliqa is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Cronos

Ô

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Cronos	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	107167.52835	kWh/a

Qualitative information

S.4 Consensus Mechanism

Cronos is present on the following networks: Cronos, Cronos Pos, Ethereum.

Cronos operates on a Proof of Stake (PoS) model integrated with Tendermint's Byzantine Fault Tolerant (BFT) consensus, designed for decentralization, security, and interoperability. This model enables validators to be selected based on staking power, rewarding them for securing and validating the network.

Core Components:

- Proof of Stake (PoS) with Tendermint BFT Validator Selection: Validators are chosen based on the amount of CRO tokens staked, securing the network and producing blocks.
- Delegation Model: Token holders can delegate their CRO to validators, enabling participation in network security without needing to run a validator node.
- Cosmos SDK and Inter-Blockchain Communication (IBC) Cross-Chain Connectivity: Built on the Cosmos SDK, Cronos enables cross-chain communication, connecting to other Cosmos blockchains and ecosystems such as Ethereum and Binance Smart Chain.

The Cronos POS Chain operates as a Layer-0 blockchain within the Cosmos ecosystem, utilizing the Tendermint Byzantine Fault Tolerant (BFT) consensus engine. It employs a Delegated Proof-of-Stake (DPoS) model, where the top 100 validators by total staked CRO tokens form the active set responsible for block production and network security.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Cronos is present on the following networks: Cronos, Cronos Pos, Ethereum.

Cronos incentivizes validators and delegators with staking rewards and transaction fees, aligning economic incentives with network security and growth.

Incentive Mechanisms:

- Staking Rewards Validators and Delegators: Both groups earn CRO rewards for supporting network security. Delegators earn a portion of the validator rewards, promoting broader network participation.
- Deflationary Mechanism Token Burning: A portion of transaction fees and staking rewards may be periodically burned, reducing CRO supply over time and potentially increasing token value.

Applicable Fees:

- Transaction and Smart Contract Fees Standard Transactions: Users pay CRO for network transactions and dApp interactions, providing a steady income for validators.
- Ethereum-Compatible Gas Fees: Executing Ethereum-compatible smart contracts incurs gas fees, similar to Ethereum, payable in CRO.

The Cronos POS Chain uses its native CRO token to coordinate economic incentives and governance. Validators are rewarded for producing and validating blocks through a combination of inflationary block rewards and transaction fees. Transaction fees, also paid in CRO, are distributed between validators and a community pool.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. Due to the structure of this network, it is not only the mainnet that is responsible for energy consumption. In order to calculate the structure adequately, a proportion of the energy consumption of the connected network, cosmos, must also be taken into account, because the connected network is also responsible for security. This proportion is determined on the basis of gas consumption. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) cronos_pos, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Osmosis

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/

Field	Value	Unit
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Osmosis	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	105130.51200	kWh/a

Qualitative information

S.4 Consensus Mechanism

Osmosis is present on the following networks: Cosmos, Osmosis.

The Cosmos network uses the Cosmos SDK, a modular framework that enables developers to build custom, application-specific blockchains. Cosmos SDK chains rely on Tendermint Core, a Byzantine Fault Tolerant (BFT) Proof of Stake (PoS) consensus engine that supports interoperability and fast transaction finality.

Core Components:

- 1. Tendermint BFT Consensus with Proof of Stake:
 - Validator Selection: Cosmos validators are selected based on the amount of ATOM they stake or receive from delegators. These validators participate in block proposal and validation through a two-thirds majority voting system.
 - Security Threshold: Tendermint BFT ensures network security as long as fewer than one-third of validators act maliciously.
- 2. Modular Cosmos SDK Framework:
 - Inter-Blockchain Communication (IBC): The Cosmos SDK supports IBC, allowing seamless interoperability between Cosmos-based blockchains.
 - Application Blockchain Interface (ABCI): This interface separates the consensus layer from the application layer, enabling developers to implement custom logic without modifying the consensus engine.

Osmosis operates on a Proof of Stake (PoS) consensus mechanism, leveraging the Cosmos SDK and Tendermint Core to provide secure, decentralized, and scalable transaction processing.

Core Components:

- Proof of Stake (PoS): Validators are chosen based on the amount of OSMO tokens they stake or are delegated by other token holders. Validators are responsible for validating transactions, producing blocks, and maintaining network security.
- Cosmos SDK and Tendermint Core: Osmosis uses Tendermint Core for Byzantine Fault Tolerant (BFT) consensus, ensuring fast finality and resistance to attacks as long as less than one-third of validators are malicious.
- Decentralized Governance: OSMO token holders can participate in governance by voting on protocol upgrades and network parameters, fostering a community-driven approach to network development.

S.5 Incentive Mechanisms and Applicable Fees

Osmosis is present on the following networks: Cosmos, Osmosis.

The Cosmos network incentivizes both validators and delegators to secure the network through staking rewards, funded by transaction fees and newly minted ATOM.

Incentive Mechanisms:

- 1. Staking Rewards for Validators and Delegators:
 - ATOM Rewards: Validators earn staking rewards in ATOM tokens for participating in consensus, with rewards shared with delegators who stake ATOM through delegation.
- 2. Slashing for Accountability:

Penalties for Misconduct: Validators who act maliciously, such as double-signing or staying offline, face slashing penalties, which remove a portion of their staked ATOM. Delegators may also experience slashing if their chosen validator is penalized, encouraging careful selection of trustworthy validators.

Applicable Fees:

1. Transaction Fees:

User-Paid Fees in ATOM: All transactions on the Cosmos Hub incur fees paid in ATOM, compensating validators for transaction processing and helping to prevent network spam.

2. Customizable Fee Model:

Custom Token Fees: Cosmos SDK allows individual chains to define their own transaction fees in tokens other than ATOM, supporting varied application requirements within the ecosystem.

Osmosis incentivizes validators, delegators, and liquidity providers through a combination of staking rewards, transaction fees, and liquidity incentives.

Incentive Mechanisms:

- Validator Rewards: Validators earn rewards from transaction fees and block rewards, distributed in OSMO tokens, for their role in securing the network and processing transactions. Delegators who stake their OSMO tokens with validators receive a share of these rewards.
- Liquidity Provider Rewards: Users providing liquidity to Osmosis pools earn swap fees and may receive additional incentives in the form of OSMO tokens to encourage liquidity provision.
- Superfluid Staking: Liquidity providers can participate in superfluid staking, staking a portion of their OSMO tokens within liquidity pools. This mechanism allows users to earn staking rewards while maintaining liquidity in the pools

Applicable Fees:

Transaction Fees: Users pay transaction fees in OSMO tokens for network activities, including swaps, staking, and governance participation. These fees are distributed to validators and delegators, incentivizing their continued participation and support for network security.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital

Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) cosmos, osmosis is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Gnosis

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Gnosis	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	104594.40000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and

the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

S.5 Incentive Mechanisms and Applicable Fees

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-term network security incentives with token holders' economic interests.
- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

IOST

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	IOST	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	103017.60000	kWh/a

Qualitative information

S.4 Consensus Mechanism

The IOST blockchain uses a consensus mechanism called Proof of Believability (PoB), which is designed to combine the advantages of both Proof of Stake (PoS) and Delegated Proof of Stake (DPoS). The PoB mechanism ensures high scalability, decentralization, and fairness while providing security and efficiency for the network.

Key Features of IOST's Consensus Mechanism:

- 1. Proof of Believability (PoB):
 - Validators in the IOST network are chosen based on their "believability," which is determined by the amount of IOST tokens staked, their performance, and their reputation within the network. The more tokens a validator stakes and the better their performance, the higher their believability score, making them more likely to be selected as a block producer.
- 2. Scalability and Efficiency:
 - PoB ensures that IOST can process high transaction throughput and scale effectively. The system uses a process of "sharding" where the network is divided into multiple smaller units, allowing for parallel processing and high scalability.
- 3. Fairness:
 - The selection process for block producers is designed to be fair and decentralized. By using PoB, the IOST blockchain reduces the potential for centralization that can occur in traditional PoS systems, ensuring that more participants can take part in the validation process.
- 4. Delegated Proof of Stake (DPoS) Elements:
- Validators are elected by token holders who vote with their IOST tokens. The elected validators produce and validate blocks, and the rewards are shared among them based on their believability and the number of tokens staked.
- 5. Finality and Security:
 - The PoB mechanism allows for quick finality of transactions, with each block being confirmed as soon as it's produced by a validator, enhancing the overall security and efficiency of the IOST blockchain

S.5 Incentive Mechanisms and Applicable Fees

The IOST blockchain incentivizes network participants, ensuring active participation and security through a combination of rewards for validators and delegators, along with transaction fees.

Incentive Mechanism:

- 1. Validator Rewards:
 - Block Rewards: Validators are rewarded with IOST tokens for producing and validating blocks. The rewards are based on their believability score, determined by their stake in the network and their performance.
 - Transaction Fees: In addition to block rewards, validators earn transaction fees from the transactions they validate. These fees incentivize them to prioritize transaction inclusion and maintain network integrity.
- 2. Delegator Rewards:

Delegators can stake their IOST tokens to vote for validators. When delegating, token holders earn a share of the rewards generated by the validator, proportional to the amount of tokens delegated. This encourages users to participate in securing the network and support trusted validators.

3. Staking and Reputation:

Validators must stake a certain amount of IOST tokens to be eligible to validate transactions. The more tokens staked, the higher the chance of being selected as a block producer. Performance is also a key factor in improving a validator's believability score, which directly impacts their chances of producing more blocks and earning rewards.

4. Penalties:

Validators who behave maliciously or fail to meet performance standards are penalized, including the potential loss of part of their staked tokens. This ensures the security and reliability of the network.

Applicable Fees:

- 1. Transaction Fees:
 - Transaction fees are paid by users to have their transactions processed and included in blocks. These fees vary depending on the complexity of the transaction and network demand. The fees are distributed to the validators who process the transactions, providing them with a continuous incentive to maintain the network.
- 2. Network Resource Fees:
 - IOST operates on a resource-based model where users must pay for energy and bandwidth to interact with the network, particularly for smart contract executions and dApp usage. Users who stake more IOST tokens are allocated more resources.
- 3. Smart Contract Execution Fees:
- Interacting with decentralized applications (dApps) and executing smart contracts on the IOST network requires paying fees based on the computational resources consumed. These fees are paid in IOST tokens and support the operational costs of running dApps.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based

🕞 Finst

on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Mina

AA

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Mina	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	92768.40000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Mina is present on the following networks: Ethereum, Mina.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Mina operates on a unique Proof-of-Stake (PoS) consensus protocol called Ouroboros Samasika, which is adapted to work with Mina's succinct blockchain structure. This innovative approach enables Mina to maintain a lightweight and efficient blockchain while ensuring security and decentralization.

Core Components of Mina's Consensus:

- 1. Ouroboros Samasika PoS Protocol:
 - Adaptation of Cardano's Ouroboros: Mina's PoS mechanism, Ouroboros Samasika, is a modified version of Cardano's Ouroboros PoS. It has been specifically optimized for Mina's succinct blockchain model, which requires minimal data storage for validating the entire chain.
- 2. Succinct Blockchain (Constant Size):
 - 22 KB Fixed Size: Unlike traditional blockchains, Mina maintains a minimal, fixed-size blockchain of around 22 KB. It achieves this through the use of recursive zero-knowledge proofs (zk-

SNARKs), which compress the entire blockchain into a single, verifiable proof that any node can validate.

- Efficient Verification: This succinct structure allows Mina to operate efficiently without requiring nodes to store vast amounts of historical data. Instead, each node validates the chain by verifying a concise zk-SNARK proof, maintaining security and scalability.
- 3. Leader Election with Verifiable Random Function (VRF):
- Randomized Validator Selection: Mina's leader election process is conducted through a Verifiable Random Function (VRF), which randomly selects validators to produce blocks based on their stake. This randomization enhances security, prevents manipulation, and ensures a decentralized network.
- 4. Fork Resolution:
 - Longest-Chain Rule: Mina employs a longest-chain rule with Ouroboros Samasika. The chain with the most accumulated proof-of-stake work is considered the valid chain. However, due to zk-SNARKs, Mina reduces the chain data required to verify the blockchain, making fork resolution more efficient.

S.5 Incentive Mechanisms and Applicable Fees

Mina is present on the following networks: Ethereum, Mina.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Mina incentivizes participants through block rewards, transaction fees, and a unique role called Snarkers to support network security, stability, and the succinct blockchain model.

Incentive Mechanisms:

- 1. Block Rewards for Validators (Block Producers):
 - Incentivizing Security and Block Production: Validators, known as block producers, earn block rewards for successfully producing blocks. These rewards provide an incentive for users to stake their tokens and contribute to network security and block production.
 - Inflationary Model: Mina has an inflationary token supply, where new tokens are minted as block rewards. This inflation rate is designed to decrease over time to reach a stable token supply, balancing incentives with long-term sustainability.
- 2. Transaction Fees:
 - Ongoing Rewards: Validators also earn transaction fees from the transactions included in each block, providing a continuous reward mechanism that grows as network usage increases.
 - Dynamic Fees During Congestion: Although Mina's transaction fees are generally flat, they can increase during times of high network demand. Validators can set higher fees to prioritize transactions, ensuring efficient block production during peak periods.

- 3. Incentives for Snarkers (Proof Generators):
 - Role of Snarkers: Mina introduces Snarkers (or Snark Workers), a unique role in the network responsible for generating zk-SNARKs to verify the blockchain's state. These zk-SNARK proofs are essential for maintaining Mina's succinct structure.
 - Compensation by Block Producers: Block producers pay Snarkers for their zk-SNARK proofs, creating a decentralized market for proof generation. This setup incentivizes individuals to produce these essential proofs, decentralizing the proof-generation process and supporting network functionality.

Applicable Fees:

Flat Transaction Fees with Dynamic Adjustments: Mina's transaction fees are typically flat, making the network accessible and predictable for users. However, during periods of network congestion, validators may set higher fees to prioritize transactions with higher fees, ensuring that critical transactions can be processed quickly.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Polygon POL

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Polygon POL	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	92432.58195	kWh/a

Qualitative information

S.4 Consensus Mechanism

Polygon POL is present on the following networks: Ethereum, Polygon.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Polygon POL is present on the following networks: Ethereum, Polygon.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. Due to the structure of this network, it is not only the mainnet that is responsible for energy consumption. In order to calculate the structure adequately, a proportion of the energy consumption of the connected network, ethereum, must also be taken into account, because the connected network is also responsible for security. This proportion is determined on the basis of gas consumption. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Binance Coin

6

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Binance Coin	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	90228.00000	kWh/a

Quantitative information

Qualitative information

S.4 Consensus Mechanism

Binance Coin is present on the following networks: Binance Smart Chain, Opbnb.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Binance Coin is present on the following networks: Binance Smart Chain, Opbnb.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These

assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

The following sources where used: bscscan

sonic

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	sonic	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	84358.80000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Sonic utilizes a Proof-of-Stake (PoS) consensus mechanism integrated with a Directed Acyclic Graph (DAG) architecture to enhance scalability and efficiency. Validators are required to stake the network's native \$S tokens, with a minimum of 500,000 \$S tokens needed to operate a validator node. This substantial staking requirement ensures that validators have a significant investment in the network's integrity.

S.5 Incentive Mechanisms and Applicable Fees

Sonic's economic model is designed to incentivize active participation from both validators and developers. Validators earn rewards through a combination of block rewards and transaction fees. The block reward system employs a dynamic Annual Percentage Rate (APR) mechanism.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Hedera HBAR

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Hedera HBAR	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	82133.21250	kWh/a

Qualitative information

S.4 Consensus Mechanism

Hedera Hashgraph operates on a unique Hashgraph consensus algorithm, a directed acyclic graph (DAG) system that diverges from traditional blockchain technology. It uses Asynchronous Byzantine Fault Tolerance (aBFT) to secure the network.

Core Components:

- 1. Hashgraph Consensus and aBFT:
 - Hedera Hashgraph's consensus mechanism achieves aBFT, which allows the network to tolerate malicious nodes without compromising security, ensuring high levels of fault tolerance and stability.

2. Gossip about Gossip Protocol:

The network employs a "Gossip about Gossip" protocol, where nodes share transaction information along with details of previous gossip events. This process allows each node to rapidly learn the entire network state, enhancing communication efficiency and minimizing latency.

3. Virtual Voting:

Hedera does not rely on traditional miners or stakers. Instead, it uses virtual voting, where nodes reach consensus by analyzing the gossip history and simulating votes based on the order and frequency of transactions received. Virtual voting eliminates the need for actual voting messages, reducing network congestion and speeding up consensus.

4. Deterministic Finality:

Once consensus is reached, transactions achieve deterministic finality instantly, making them irreversible and confirmed within seconds. This attribute is ideal for applications needing quick and irreversible transaction confirmations.

5. Staking for Network Security:

Hedera incorporates staking to bolster network security. HBAR holders can stake their tokens to support validator nodes, contributing to the network's resilience and encouraging long-term engagement in consensus operations.

S.5 Incentive Mechanisms and Applicable Fees

Hedera Hashgraph incentivizes network participation through transaction fees and staking rewards, with a structured and predictable fee model designed for enterprise use.

Incentive Mechanisms:

- 1. Staking Rewards for Nodes:
 - HBAR Rewards for Node Operators: Node operators earn HBAR rewards for providing network security and processing transactions, incentivizing them to act honestly and support network stability.
 - User Staking: HBAR holders can stake their tokens to support nodes. Staking rewards offer an additional incentive for token holders to engage in network operations, although the structure may evolve with network growth.
- 2. Service-Based Node Rewards:
 - Nodes receive rewards based on specific services they provide to the network, such as:
 - Consensus Services: Reaching consensus and maintaining transaction order.
 - File Storage: Storing data on the Hedera network.
 - Smart Contract Processing: Supporting contract executions for decentralized applications.

Applicable Fees:

- 1. Predictable Transaction Fees: Hedera's fee structure is fixed and predictable, ensuring transparent costs for users and appealing to enterprise-grade applications. Transaction fees are paid in HBAR and are designed to be stable, making it easier for businesses to plan for usage costs.
- 2. Fee Allocation: All transaction fees collected in HBAR are distributed to network nodes as rewards, reinforcing their role in maintaining network integrity and processing transactions efficiently.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) hedera_hbar is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Venom

Augentitetive	information
Ouantitative	information
•	

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Venom	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	82125.00000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Venom is a Layer-0 blockchain that employs a hybrid consensus mechanism combining Proof of Stake (PoS) and Byzantine Fault Tolerance (BFT) algorithms. In this system, validators are selected based on the amount of VENOM tokens they stake, with higher stakes increasing the likelihood of being chosen to produce new blocks. The BFT component ensures that at least two-thirds of validators must agree on the blockchain's state, enhancing security and consistency. This hybrid

approach allows Venom to achieve high transaction throughput while maintaining decentralization and security.

S.5 Incentive Mechanisms and Applicable Fees

Within the Venom ecosystem, validators are incentivized through rewards earned by staking VENOM tokens and participating in block production. Users pay transaction fees in VENOM tokens for operations conducted on the network, which are distributed to validators as compensation for their services.

The fee structure is designed to be low-cost, promoting user participation and developer adoption. Additionally, Venom supports staking and farming opportunities, allowing token holders to earn passive income, and facilitates access to decentralized exchanges and financial tools within its ecosystem.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Celestia

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Celestia	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	77920.20000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Celestia is present on the following networks: Celestia, Injective, Osmosis.

Celestia employs a Proof-of-Stake (PoS) consensus mechanism, wherein validators are selected based on the amount of TIA tokens they stake. These validators are responsible for ordering transactions and ensuring data availability within the network.

Injective operates on a Tendermint-based Proof of Stake (PoS) consensus model, ensuring high throughput and immediate transaction finality.

Core Components:

- Tendermint-based Proof of Stake (PoS):
 - Ensures instant transaction finality and supports efficient block production for high-speed transactions.
- Validator Selection:

Validators are chosen based on the amount of INJ tokens staked, considering both self-staked and delegated tokens, to maintain a decentralized network.

- Delegation:

INJ holders can delegate their tokens to validators, earning a share of staking rewards while participating in network governance.

- Instant Finality:

The Tendermint consensus mechanism provides immediate finality, ensuring transactions cannot be reversed once validated.

Osmosis operates on a Proof of Stake (PoS) consensus mechanism, leveraging the Cosmos SDK and Tendermint Core to provide secure, decentralized, and scalable transaction processing.

Core Components:

- Proof of Stake (PoS): Validators are chosen based on the amount of OSMO tokens they stake or are delegated by other token holders. Validators are responsible for validating transactions, producing blocks, and maintaining network security.
- Cosmos SDK and Tendermint Core: Osmosis uses Tendermint Core for Byzantine Fault Tolerant (BFT) consensus, ensuring fast finality and resistance to attacks as long as less than one-third of validators are malicious.
- Decentralized Governance: OSMO token holders can participate in governance by voting on protocol upgrades and network parameters, fostering a community-driven approach to network development.

S.5 Incentive Mechanisms and Applicable Fees

Celestia is present on the following networks: Celestia, Injective, Osmosis.

The native token, TIA, serves multiple roles within the Celestia ecosystem. Validators earn rewards in TIA for participating in the consensus process and maintaining data availability. Users pay transaction fees in TIA when submitting data to the network.

Injective incentivizes network participation through staking rewards and a unique transaction fee model that supports long-term value for INJ tokens.

Incentive Mechanisms:

Staking Rewards:

INJ holders earn rewards for staking their tokens, encouraging active participation in securing the network.

Validator Rewards:

Validators receive staking rewards and transaction fees for processing transactions and maintaining network security.

Applicable Fees:

Transaction Fees:

Users pay fees in INJ tokens for network transactions, including smart contract execution and trading.

Fee Structure:

A portion of transaction fees is burned via a weekly on-chain auction, reducing the overall supply of INJ tokens and supporting a deflationary tokenomics model.

Osmosis incentivizes validators, delegators, and liquidity providers through a combination of staking rewards, transaction fees, and liquidity incentives.

Incentive Mechanisms:

- Validator Rewards: Validators earn rewards from transaction fees and block rewards, distributed in OSMO tokens, for their role in securing the network and processing transactions. Delegators who stake their OSMO tokens with validators receive a share of these rewards.
- Liquidity Provider Rewards: Users providing liquidity to Osmosis pools earn swap fees and may receive additional incentives in the form of OSMO tokens to encourage liquidity provision.
- Superfluid Staking: Liquidity providers can participate in superfluid staking, staking a portion of their OSMO tokens within liquidity pools. This mechanism allows users to earn staking rewards while maintaining liquidity in the pools

Applicable Fees:

Transaction Fees: Users pay transaction fees in OSMO tokens for network activities, including swaps, staking, and governance participation. These fees are distributed to validators and delegators, incentivizing their continued participation and support for network security.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) injective, osmosis is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the

activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

MovieBloc

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	MovieBloc	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	76034.16324	kWh/a

Qualitative information

S.4 Consensus Mechanism

Ontology operates on a Verifiable Byzantine Fault Tolerance (VBFT) consensus mechanism, which combines Proof of Stake (PoS), Verifiable Random Function (VRF), and Byzantine Fault Tolerance (BFT) to deliver a secure and efficient consensus process.

Core Components:

- VBFT Hybrid Consensus: Combines PoS for staking, VRF for randomness in node selection, and BFT for transaction finality, ensuring both security and efficiency in the network.
- Node Selection via VRF: A Verifiable Random Function ensures randomness in selecting consensus nodes, making it difficult for adversaries to predict or manipulate the selection process.
- Stake-Based Voting: Nodes with higher stakes have greater voting power in the consensus process, aligning their incentives with the network's security and stability.

S.5 Incentive Mechanisms and Applicable Fees

Ontology employs a dual-token system and a comprehensive fee-sharing model to incentivize participation and ensure the network's sustainability.

Incentive Mechanisms:

- Staking Rewards: ONT holders can stake their tokens to earn ONG rewards. This incentivizes long-term commitment and active participation in governance and network stability.
- Governance Participation: ONT holders have voting rights in network governance decisions, enabling them to influence protocol upgrades and other critical parameters.

Applicable Fees:

- Transaction Fees: Users pay transaction fees in ONG for transactions and smart contract executions. Fees are relatively low, making Ontology suitable for microtransactions and complex applications.
- Fee-Sharing Model: A portion of transaction fees is distributed to stakers and node operators, aligning the interests of all network participants and supporting the ecosystem's sustainability.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ontology is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Moonbeam

Q

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Moonbeam	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	65700.00000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Moonbeam employs a Delegated Proof of Stake (DPoS) consensus mechanism combined with the Polkadot relay chain for enhanced scalability, finality, and security. It utilizes collators and validators, with finality provided by the GRANDPA finality gadget, ensuring deterministic block finality.

Key Features of Moonbeam's Consensus Mechanism:

1. Delegated Proof of Stake (DPoS):

- Collators and Validators: In Moonbeam's DPoS system, collators maintain the parachain by collecting transactions from users and producing state transition proofs. The collator set is

chosen based on the stake they have, including delegated stake. Delegation: Token holders can delegate their stake to collator candidates. The top collator candidates, including those with delegated stake, join the active set. Collators in the active set are randomly selected to produce blocks.

- Stakes and Block Production: Once a collator is in the active set, their total stake does not impact their chance of being selected to produce blocks.
- 2. Polkadot Relay Chain Integration:
 - Moonbeam is built as a parachain on Polkadot, which provides shared security, scalability, and consensus. The relay chain validators ensure that Moonbeam's blocks are validated and secured.
- 3. GRANDPA Finality:
 - Deterministic Finality: Moonbeam relies on Polkadot's GRANDPA finality gadget, which provides fast and deterministic finality for transactions. When a block is finalized, it cannot be reverted except through on-chain governance or forking.
 - Parallel Finality: The finality process in Moonbeam occurs simultaneously with block production, unlike Ethereum, which has slower finality. GRANDPA allows for the quick confirmation of blocks, often within a single block on Moonbeam.
- 4. Block Production:
 - Blocks are produced by collators who are selected based on their stake and delegated stake, contributing to the network's decentralized nature.

S.5 Incentive Mechanisms and Applicable Fees

Moonbeam incentivizes participation through staking rewards for collators and token holders, alongside transaction fees.

Incentive Mechanism:

- 1. Collator Rewards:
 - Block Rewards: Collators are rewarded with newly minted tokens for successfully producing and validating blocks. These rewards are distributed proportionally to the collators in the active set.
 - Transaction Fees: Collators also earn transaction fees from the transactions included in the blocks they produce. These fees are paid by users to prioritize their transactions.
- 2. Delegation Rewards:
 - Delegated Stake: Token holders can delegate their stake to collator candidates. By doing so, they share in the rewards earned by the collators to whom they delegate their tokens. This incentivizes the broader community to participate in governance and block production.
 - Voting Power: Token holders who delegate their stake to collators help secure the network and participate in the selection of active collators.
- 3. Governance Participation:

Voting on Network Proposals: Moonbeam uses its native tokens to allow participants to vote on governance proposals, helping to influence the future direction of the network and incentivizing active involvement in network management.

Applicable Fees:

- 1. Transaction Fees:
 - Fee Calculation: Transaction fees on Moonbeam are determined based on the complexity and size of the transaction. Users pay these fees in the native token (GLMR), which are distributed to the collators.
 - Fee Distribution: The fees are split between collators, incentivizing them to process transactions efficiently. The amount of transaction fees can vary depending on network congestion and the size of the transaction.

2. Staking Fees:

Collator Staking: Collators must stake a certain amount of tokens to be eligible for block production. They are incentivized with staking rewards and transaction fees for ensuring the network's security and functionality.

3. Governance Fees:

Voting Fees: Users may need to pay small fees to participate in governance, such as proposing changes or voting on proposals. These fees ensure governance is utilized effectively and prevents spam on the network.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. Due to the structure of this network, it is not only the mainnet that is responsible for energy consumption. In order to calculate the structure adequately, a proportion of the energy consumption of the connected network, polkadot, must also be taken into account, because the connected network is also responsible for security. This proportion is determined on the basis of gas consumption. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

WAX

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	WAX	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	54750.00000	kWh/a

Qualitative information

S.4 Consensus Mechanism

The WAXP blockchain utilizes a Delegated Proof of Stake (DPoS) consensus mechanism designed to provide scalability, low latency, and decentralization, while ensuring efficient transaction processing and network security.

Key Features of WAXP's Consensus Mechanism:

1. Delegated Proof of Stake (DPoS):

Token holders vote for block producers (BPs), who are responsible for validating transactions and producing new blocks. The voting power is directly tied to the amount of WAXP tokens held, with token holders able to vote for up to 30 block producers at a time. This system ensures decentralization while maintaining high network throughput.

2. Block Production:

Block producers take turns producing blocks in rounds, with each block producer having an equal chance to validate and produce blocks in their turn. The process ensures that all transactions are processed efficiently, and the network remains fast and scalable.

3. Finality and Security:

Once a block is produced and validated by a sufficient number of block producers, it is finalized and added to the blockchain. This prevents forking and ensures high security and immutability for the transactions.

4. Incentives for Participation:

Block producers receive WAXP tokens and transaction fees as rewards for their participation in block creation and validation. These incentives encourage active participation in maintaining the network's performance, security, and decentralization.

S.5 Incentive Mechanisms and Applicable Fees

WAXP uses a Delegated Proof of Stake (DPoS) consensus mechanism to incentivize network participants.

Incentive Mechanism:

1. Block Producer Rewards:

Block Producers (BPs) earn WAXP tokens and transaction fees for validating and producing blocks. These rewards encourage active participation.

2. Voting and Delegation:

Token Holders vote for block producers and can delegate their votes to trusted producers, earning rewards based on their delegation.

3. Active Participation:

Block producers and voters are rewarded with WAXP tokens and transaction fees, promoting a secure and decentralized network.

Applicable Fees:

- 1. Transaction Fees:
 - Transaction fees in WAXP tokens are paid for every transaction, helping incentivize block producers and maintain the network.
- 2. Network Resources:

Users stake WAXP tokens to access resources like RAM, CPU, and bandwidth for transactions and smart contracts.

3. Fee Redistribution:

Transaction and resource fees are distributed to block producers, rewarding their participation in securing the network.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These

assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Stellar Lumen

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Stellar Lumen	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	52560.00000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Stellar uses a unique consensus mechanism known as the Stellar Consensus Protocol (SCP).

Core Concepts:

- 1. Federated Byzantine Agreement (FBA):
 - SCP is built on the principles of Federated Byzantine Agreement (FBA), which allows decentralized, leaderless consensus without the need for a closed system of trusted participants.
 - Quorum Slices: Each node in the network selects a set of other nodes (quorum slice) that it trusts. Consensus is achieved when these slices overlap and collectively agree on the transaction state.
- 2. Nodes and Validators:
 - Nodes: Nodes running the Stellar software participate in the network by validating transactions and maintaining the ledger.
 - Validators: Nodes that are responsible for validating transactions and reaching consensus on the state of the ledger. Consensus Process
- 3. Transaction Validation:
 - Transactions are submitted to the network and nodes validate them based on predetermined rules, such as sufficient balances and valid signatures.

- 4. Nomination Phase:
 - Nomination: Nodes nominate values (proposed transactions) that they believe should be included in the next ledger. Nodes communicate their nominations to their quorum slices.
 - Agreement on Nominations: Nodes vote on the nominated values, and through a process of voting and federated agreement, a set of candidate values emerges. This phase continues until nodes agree on a single value or a set of values.
- 5. Ballot Protocol (Voting and Acceptance): Balloting:
 - The agreed-upon values from the nomination phase are then put into ballots. Each ballot goes through multiple rounds of voting, where nodes vote to either accept or reject the proposed values.
 - Federated Voting: Nodes exchange votes within their quorum slices, and if a value receives sufficient votes across overlapping slices, it moves to the next stage.
 - Acceptance and Confirmation: If a value gathers enough votes through multiple stages (prepare, confirm, externalize), it is accepted and externalized as the next state of the ledger.
- 6. Ledger Update:

Once consensus is reached, the new transactions are recorded in the ledger. Nodes update their copies of the ledger to reflect the new state. Security and Economic Incentives

7. Trust and Quorum Slices:

Nodes are free to choose their own quorum slices, which provides flexibility and decentralization. The overlapping nature of quorum slices ensures that the network can reach consensus even if some nodes are faulty or malicious.

8. Stability and Security:

SCP ensures that the network can achieve consensus efficiently without relying on energyintensive mining processes. This makes it environmentally friendly and suitable for highthroughput applications.

9. Incentive Mechanisms:

Unlike Proof of Work (PoW) or Proof of Stake (PoS) systems, Stellar does not rely on direct economic incentives like mining rewards. Instead, the network incentivizes participation through the intrinsic value of maintaining a secure, efficient, and reliable payment network.

S.5 Incentive Mechanisms and Applicable Fees

Stellar's consensus mechanism, the Stellar Consensus Protocol (SCP), is designed to achieve decentralized and secure transaction validation through a federated Byzantine agreement (FBA) model. Unlike Proof of Work (PoW) or Proof of Stake (PoS) systems, Stellar does not rely on direct economic incentives like mining rewards. Instead, it ensures network security and transaction validation through intrinsic network mechanisms and transaction fees.

Incentive Mechanisms:

- 1. Quorum Slices and Trust:
 - Quorum Slices: Each node in the Stellar network selects other nodes it trusts to form a quorum slice. Consensus is achieved through the intersection of these slices, creating a robust and decentralized trust network.
 - Federated Voting: Nodes communicate their votes within their quorum slices, and through multiple rounds of federated voting, they agree on the transaction state. This process ensures that even if some nodes are compromised, the network can still achieve consensus securely.
- 2. Intrinsic Value and Participation:
 - Network Value: The intrinsic value of participating in a secure, efficient, and reliable payment network incentivizes nodes to act honestly and maintain network security. Organizations and individuals running nodes benefit from the network's functionality and the ability to facilitate transactions.

- Decentralization: By allowing nodes to choose their own quorum slices, Stellar promotes decentralization, reducing the risk of central points of failure and making the network more resilient to attacks. Fees on the Stellar Blockchain
- 3. Transaction Fees:
 - Flat Fee Structure: Each transaction on the Stellar network incurs a flat fee of 0.00001 XLM (known as a base fee). This low and predictable fee structure makes Stellar suitable for micropayments and high-volume transactions.
 - Spam Prevention: The transaction fee serves as a deterrent against spam attacks. By requiring a small fee for each transaction, Stellar ensures that the network remains efficient and that resources are not wasted on processing malicious or frivolous transactions.
- 4. Operational Costs:
 - Minimal Fees: The minimal transaction fees on Stellar not only prevent spam but also cover the operational costs of running the network. This ensures that the network can sustain itself without placing a significant financial burden on users.
- 5. Reserve Requirements:
 - Account Reserves: To create a new account on the Stellar network, a minimum balance of 1 XLM is required. This reserve requirement prevents the creation of an excessive number of accounts, further protecting the network from spam and ensuring efficient resource usage.
 - Trustline and Offer Reserves: Additional reserve requirements exist for creating trustlines and offers on the Stellar decentralized exchange (DEX). These reserves help maintain network integrity and prevent abuse.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Secret

 \otimes

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Secret	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/

Field	Value	Unit
S.8 Energy consumption	52560.00000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Secret utilizes the Proof of Stake (PoS) consensus mechanism to secure its network, with an emphasis on privacy-preserving features. The blockchain is built on the Cosmos SDK, allowing it to interoperate with other blockchains while maintaining the ability to offer confidential transactions.

Key Features of Secret Blockchain's Consensus Mechanism:

- 1. Proof of Stake (PoS):
 - Validators are selected to produce and validate blocks based on the number of SCRT tokens they stake. Stakers, also known as validators, secure the network by participating in the consensus process, ensuring transaction validation and block production. The greater the amount of SCRT tokens staked, the higher the chances of being selected to validate the next block.
- 2. Privacy by Default:

Secret Network uses encryption and trusted execution environments (TEEs) to ensure that data is kept private. This is in contrast to most blockchains that publicly display all transaction data. The network supports private smart contracts, meaning that the details of transactions, including the sender, recipient, and amount, are confidential by default.

- 3. Validator and Delegator Structure:
 - Validators in the network are responsible for producing blocks, validating transactions, and maintaining network security. Token holders who do not wish to operate their own validator node can delegate their SCRT tokens to a validator. Delegators share in the rewards of validators based on the amount of SCRT tokens they delegate.
- 4. Cosmos-SDK & Tendermint Core:
 - The Cosmos-SDK and Tendermint Core provide the underlying infrastructure for Secret's PoS consensus. This enables fast finality and low-latency transaction processing, ensuring the network is both scalable and secure.

S.5 Incentive Mechanisms and Applicable Fees

Incentive Mechanism:

1. Validator Rewards:

Validators are rewarded in SCRT tokens for producing blocks, validating transactions, and maintaining network security. These rewards are proportional to the amount of stake a validator holds. Validators are selected based on the amount of SCRT tokens staked, and the greater the stake, the higher the chances of being selected to validate the next block.

2. Delegator Rewards:

Token holders who delegate their SCRT tokens to a validator receive a share of the rewards earned by that validator. The more SCRT a delegator contributes, the larger their share of the rewards. This incentivizes the broader community to participate in the network's staking process without needing to operate their own validator nodes.

3. Staking and Delegation:

Staking is essential for network participation and security, and it is the primary mechanism through which both validators and delegators earn rewards. This staking model aligns participants' interests with the network's success and integrity. Validators and delegators are

motivated to act honestly because they face slashing penalties if they fail to perform their duties correctly, such as participating in double-signing or other malicious activities.

Applicable Fees:

- 1. Transaction Fees:
 - Users pay transaction fees in SCRT tokens to process transactions on the network. These fees are used to incentivize validators for validating and including transactions in blocks. Fees are determined dynamically based on network demand and transaction complexity. In periods of high congestion, users may need to pay higher fees for quicker transaction processing.
- 2. Smart Contract Fees:

Secret supports private smart contracts, and users must pay fees for executing these contracts. These fees are also paid in SCRT tokens and are distributed to validators who process the execution. The fees associated with smart contract execution are based on the resources consumed by the contract, including computational power and storage.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. Due to the structure of this network, it is not only the mainnet that is responsible for energy consumption. In order to calculate the structure adequately, a proportion of the energy consumption of the connected network, cosmos, must also be taken into account, because the connected network is also responsible for security. This proportion is determined on the basis of gas consumption. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

VeChain

 \mathbb{V}

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	VeChain	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	45991.24423	kWh/a

Quantitative information

Qualitative information

S.4 Consensus Mechanism

VeChain is present on the following networks: Binance Smart Chain, Vechain.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

VeChain employs a Proof of Authority (PoA) 2.0 consensus mechanism, where trusted Authority Masternodes are responsible for validating transactions, providing both security and efficiency for enterprise applications.

Core Components of VeChain's Consensus:

1. Proof of Authority (PoA) 2.0:

Trusted Authority Masternodes: VeChain's PoA 2.0 relies on a set of pre-approved Authority Masternodes to validate blocks and confirm transactions. These nodes are selected based on their reputation and reliability, ensuring network integrity and trustworthiness.

2. Finality and Security:

Immediate Transaction Finality: Once a block is validated under PoA 2.0, it is final, reducing the likelihood of forks. This immediate finality enhances the security and reliability of the network, making it suitable for enterprise-grade applications.

S.5 Incentive Mechanisms and Applicable Fees

VeChain is present on the following networks: Binance Smart Chain, Vechain.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

VeChain's incentive model utilizes a dual-token system to support staking, transaction processing, and economic stability, helping to ensure predictable costs for network users.

Incentive Mechanisms:

- 1. Dual-Token Model:
 - VET (VeChain Token): VET is used primarily for value transfer and staking on the network. VET holders can stake their tokens to generate VTHO, which serves as "gas" for transactions.
 - VTHO (VeThor Token): VTHO is used to pay for transaction fees, providing a buffer against fluctuations in VET's market price. This setup decouples transaction costs from VET's volatility, allowing for stable and predictable transaction fees.
- 2. Staking Rewards:
 - VET Staking to Generate VTHO: By staking VET, holders automatically generate VTHO tokens, which can be used to cover transaction costs. This staking mechanism incentivizes VET holders to participate in the network and secure its operations.

Applicable Fees:

Transaction Fees in VTHO: Transaction fees on VeChain are paid in VTHO, keeping costs stable and predictable for users regardless of VET's market price. This predictable fee model makes the network appealing for enterprises and high-volume applications.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

THORChain

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	THORChain	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	45990.00000	kWh/a

Qualitative information

S.4 Consensus Mechanism

THORChain utilizes the Tendermint Byzantine Fault Tolerant (BFT) consensus protocol combined with Proof of Stake (PoS), where validator nodes stake RUNE to secure the network.

Core Components of THORChain's Consensus:

- 1. Tendermint Consensus Protocol:
 - THORChain uses the Tendermint consensus protocol, a BFT algorithm that enables high-speed and secure consensus across distributed nodes. This protocol is designed to achieve consensus even if some validators behave maliciously, as long as a majority act honestly.
- 2. Proof of Stake (PoS) Mechanism:
 - Staking Requirements: Validator nodes are required to stake RUNE, the native token of THORChain, to participate in the consensus process. Staking serves as collateral, incentivizing validators to act honestly and discouraging malicious behavior through economic penalties.
 - Validator Rotation: THORChain regularly rotates its validators, ensuring that only the most actively engaged and well-staked nodes maintain validator status. This competitive environment encourages decentralization, as nodes must continuously stake RUNE to secure a spot in the validator set.
- 3. Slashing for Security:
 - Validators can be penalized (slashed) if they fail to fulfill their responsibilities or act dishonestly. Slashing serves as a deterrent against malicious behavior, ensuring validators remain reliable and maintain the integrity of the network.

S.5 Incentive Mechanisms and Applicable Fees

THORChain employs staking rewards, transaction fees, and slashing penalties to maintain security and incentivize validator participation.

Incentive Mechanisms:

1. Staking Rewards:

Validators earn staking rewards for participating in network security and consensus. These rewards are paid in RUNE, THORChain's native token, and are proportional to the amount staked. This incentivizes nodes to lock up RUNE and remain active in the network.

2. Transaction Fees:

Validators also earn a portion of the transaction fees generated within the network. These fees are distributed among validators as additional rewards, providing an ongoing incentive to process transactions efficiently.

3. Decentralization through Node Rotation:

The regular rotation of validator nodes means that participants must continuously compete for positions by staking RUNE. This mechanism enhances network security and promotes decentralization, preventing any single entity from dominating the network.

4. Slashing Mechanism:

To maintain network integrity, THORChain employs a slashing mechanism, penalizing validators that act maliciously or fail to meet their responsibilities. This encourages validators to act in the network's best interest.

Applicable Fees:

Transaction fees on THORChain are paid in RUNE and vary based on network activity and transaction type. These fees help compensate validators and support the network's operational costs.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Celo

С

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Celo	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	39420.00000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Celo is present on the following networks: Celo, Near Protocol.

Celo uses a Proof of Stake (PoS) consensus model, which supports a decentralized, communitydriven approach to governance and network security.

Core Components of Celo's Consensus:

- 1. Proof of Stake (PoS):
 - Validator Role: Validators are responsible for creating new blocks, validating transactions, and maintaining the security and integrity of the network. Validators are selected based on the amount of CELO tokens they hold and stake, incentivizing honest participation and network reliability.
- 2. Decentralized Governance:

Community Voting: Governance on Celo is decentralized, allowing CELO token holders to vote on proposals and changes to the network. This community-driven approach ensures that token holders have a say in the network's development and strategic direction.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a novel approach called Doomslug, which enables high efficiency, fast transaction processing, and secure finality in its operations.

Core Concepts:

- 1. Doomslug and Proof of Stake:
 - NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR tokens to participate in securing the network. However, NEAR's implementation is enhanced with the Doomslug protocol.
 - Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds of validators approve the block, ensuring rapid transaction confirmation.
- 2. Sharding with Nightshade:
 - NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into multiple shards, enabling parallel processing of transactions across the network, thus significantly increasing throughput. Each shard processes a portion of transactions, and the outcomes are merged into a single "snapshot" block.
 - This sharding approach ensures scalability, allowing the network to grow and handle increasing demand efficiently.

Consensus Process:

- 1. Validator Selection:
 - Validators are selected to propose and validate blocks based on the amount of NEAR tokens staked. This selection process is designed to ensure that only validators with significant stakes and community trust participate in securing the network.
- 2. Transaction Finality:
 - NEAR achieves transaction finality through its PoS-based system, where validators vote on blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug, meaning that no forks can alter the confirmed state.
- 3. Epochs and Rotation:
 - Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in which validators are reshuffled, and new block proposers are selected, ensuring a balance between performance and decentralization.

S.5 Incentive Mechanisms and Applicable Fees

Celo is present on the following networks: Celo, Near Protocol.

Celo's incentive model rewards validators and prioritizes accessibility with minimal transaction fees, especially for cross-border payments, supporting a flexible and user-friendly ecosystem.

Incentive Mechanisms:

- 1. Validator Rewards:
 - Transaction Fees and Newly Minted Tokens: Validators earn rewards from transaction fees as well as newly minted CELO tokens. This dual-source reward system provides a continuous financial incentive for validators to act honestly and secure the network.
- 2. Transaction Flexibility and Gas Price:
 - Gas Limit and Price Control: Each transaction specifies a maximum gas limit, ensuring that users are not excessively charged if a transaction fails. Users can also set a gas price to prioritize transactions, allowing faster processing for higher fees.
 - Payment Flexibility with Multiple Currencies: Unlike many blockchains, Celo allows transaction fees to be paid in various ERC-20 tokens, providing flexibility for users. This approach improves accessibility, especially for individuals with limited access to traditional banking.
- 3. Minimal Fee Structure for Accessibility:
 - Designed for Low-Cost Transactions: Celo's fee structure is intentionally minimal, particularly for cross-border payments, making it ideal for users who may not have traditional banking options. This focus on accessibility aligns with Celo's mission to bring blockchain technology to underserved communities.

Applicable Fees:

Transaction Fees: Fees are calculated based on gas usage, with a maximum gas limit set per transaction. This limit protects users from excessive costs, while the option to pay in multiple currencies enhances flexibility.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5% annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators propose blocks, validate transactions, and receive a share of these rewards based on their staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and improve the chances of being selected to validate transactions. Delegators share in the validator's rewards based on their delegated tokens, incentivizing users to support reliable validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting dishonestly. The slashing mechanism enforces security by deducting a portion of their staked tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total circulating supply, introducing a potential deflationary effect over time. Validators also receive a portion of transaction fees as additional rewards, providing an ongoing incentive for network maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest is distributed to validators as compensation for their work. The burning mechanism helps maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging efficient use of resources and preventing spam attacks.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The

information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) celo, near_protocol is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Ronin

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Ronin	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	39420.00000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Ronin utilizes a Delegated Proof of Stake (DPoS) consensus mechanism, where community-elected validators are responsible for securing the network and validating transactions.

Core Components of Ronin's Consensus:

- 1. Delegated Proof of Stake (DPoS):
 - Community Voting for Validator Selection: RON token holders delegate their tokens to vote for validators, who are then selected to produce blocks, validate transactions, and maintain network security. Validators with the most votes are chosen to participate in consensus.
 - Periodic Validator Rotation: Validators are regularly rotated based on community votes, enhancing decentralization and preventing long-term control by any single validator group. This rotation supports both security and fairness.
- 2. Incentive-Driven Voting System:
 - Alignment with Community Interests: The voting system ensures that validators remain aligned with community goals. Validators that fail to perform adequately or act against network interests may lose votes and be replaced by more trusted participants.

S.5 Incentive Mechanisms and Applicable Fees

Ronin's incentive model combines rewards, slashing mechanisms, and governance features to support network security and encourage active community participation.

Incentive Mechanisms:

- 1. Rewards for Validators and Delegators:
 - Staking Rewards for Validators: Validators earn RON tokens as rewards for successfully producing blocks and validating transactions. These rewards incentivize validators to fulfill their duties diligently, maintaining network stability.
 - Delegator Rewards: Delegators who stake their tokens with selected validators also earn a portion of the staking rewards. This sharing of rewards promotes broad participation from token holders in network security and governance.
- 2. Slashing Mechanism for Accountability:
 - Penalty for Malicious Behavior: A slashing mechanism penalizes validators who act dishonestly or fail to meet performance standards by cutting a portion of their staked RON tokens. This deters misbehavior and encourages responsible participation.
 - Delegator Risk: Delegators who stake with misbehaving validators are also subject to slashing, which encourages them to choose trustworthy validators and monitor performance carefully.
- 3. Governance Participation:
 - RON Token for Governance: Beyond staking and transaction fees, the RON token enables token holders to participate in governance. This includes voting on network upgrades, validator selection, and other protocol decisions, giving token holders a voice in network direction and policy.

Applicable Fees:

Transaction Fees: Fees are paid in RON tokens, contributing to validator rewards and helping to maintain network operations. These fees are designed to be affordable, ensuring accessibility for users while supporting validators' roles.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

MANTRA

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	MANTRA	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	33984.69936	kWh/a

Qualitative information

S.4 Consensus Mechanism

MANTRA is present on the following networks: Base, Binance Smart Chain, Ethereum, Mantra Oma, Osmosis, Polygon.

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

🕞 Finst

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

MANTRA Chain is a Layer 1 blockchain built using the Cosmos SDK and employs the Tendermint Byzantine Fault Tolerant (BFT) consensus mechanism. It operates under a Proof-of-Stake (PoS) model, where validators are selected based on the amount of OM tokens they stake.

Osmosis operates on a Proof of Stake (PoS) consensus mechanism, leveraging the Cosmos SDK and Tendermint Core to provide secure, decentralized, and scalable transaction processing.

Core Components:

- Proof of Stake (PoS): Validators are chosen based on the amount of OSMO tokens they stake or are delegated by other token holders. Validators are responsible for validating transactions, producing blocks, and maintaining network security.
- Cosmos SDK and Tendermint Core: Osmosis uses Tendermint Core for Byzantine Fault Tolerant (BFT) consensus, ensuring fast finality and resistance to attacks as long as less than one-third of validators are malicious.
- Decentralized Governance: OSMO token holders can participate in governance by voting on protocol upgrades and network parameters, fostering a community-driven approach to network development.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

MANTRA is present on the following networks: Base, Binance Smart Chain, Ethereum, Mantra Oma, Osmosis, Polygon.

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
- Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Osmosis incentivizes validators, delegators, and liquidity providers through a combination of staking rewards, transaction fees, and liquidity incentives.

Incentive Mechanisms:

- Validator Rewards: Validators earn rewards from transaction fees and block rewards, distributed in OSMO tokens, for their role in securing the network and processing transactions. Delegators who stake their OSMO tokens with validators receive a share of these rewards.
- Liquidity Provider Rewards: Users providing liquidity to Osmosis pools earn swap fees and may receive additional incentives in the form of OSMO tokens to encourage liquidity provision.
- Superfluid Staking: Liquidity providers can participate in superfluid staking, staking a portion of their OSMO tokens within liquidity pools. This mechanism allows users to earn staking rewards while maintaining liquidity in the pools

Applicable Fees:

Transaction Fees: Users pay transaction fees in OSMO tokens for network activities, including swaps, staking, and governance participation. These fees are distributed to validators and delegators, incentivizing their continued participation and support for network security.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These

assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) base, binance_smart_chain, ethereum, osmosis, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Lisk

0

Field Value Unit S.1 Name Finst B.V. S.2 Relevant legal entity identifier 724500UI8UD7HKGVJX65 S.3 Name of the crypto-asset Lisk S.6 Beginning of the period to which the disclosure relates 2024-06-30 S.7 End of the period to which the disclosure relates 2025-06-30 32850.00000 kWh/a S.8 Energy consumption

Quantitative information

Qualitative information

S.4 Consensus Mechanism

Lisk employs a Delegated Proof of Stake (DPoS) consensus mechanism to maintain a balance between decentralization, security, and efficiency in block production and transaction validation.

Core Components of Lisk's Consensus:

1. Delegated Proof of Stake (DPoS):

Community-Elected Delegates: Lisk operates with a fixed set of 101 active delegates, chosen by token holders through a voting process. Lisk holders vote for delegates by staking their LSK

tokens, and the top 101 delegates with the highest votes are selected for block production and validation.

- 2. Block Production:
 - Fair Rotational System: Active delegates take turns producing blocks at fixed intervals, ensuring fair participation and equal opportunity for all elected delegates. This rotation system promotes decentralization and prevents single entities from dominating block production.
- 3. Finality and Security:

Reduced Fork Risk: The fixed number of reputable delegates provides a fast confirmation time for blocks and minimizes the likelihood of forks or attacks, enhancing overall network security and stability.

S.5 Incentive Mechanisms and Applicable Fees

Lisk's incentive model rewards both active delegates and token holders, ensuring secure and consistent network performance while managing inflation.

Incentive Mechanisms:

- 1. Rewards for Delegates:
 - Block Rewards: Delegates receive rewards in LSK tokens for producing blocks, incentivizing them to actively participate in securing and maintaining the network. This reward structure encourages reliable block production from the community-elected delegates.
 - Transaction Fees: Delegates also earn transaction fees paid in LSK tokens for each transaction they validate within blocks. This provides an additional source of income and incentivizes efficient transaction processing.
- 2. Voting Incentives for Token Holders:
 - Supporting Reliable Delegates: Lisk token holders benefit indirectly by voting for trustworthy and stable delegates, as these delegates help secure the network. Token holders play an active role in network governance by supporting reliable participants.
- 3. Reward Reduction Over Time:

Sustainable Token Economy: Lisk's block rewards decrease over time to control inflation and ensure the long-term sustainability of the token economy. This gradual reduction in rewards aligns with Lisk's goal of managing token supply and maintaining a healthy economic structure.

Applicable Fees:

1. Fixed Fee Structure:

Predictable Transaction Costs: Lisk employs a fixed fee structure for standard transactions, providing users with predictability in transaction costs and making the network accessible and user-friendly.

2. Two-Cost Structure for Mainnet Transactions:

Layer 2 Execution Fee and Layer 1 Data Fee: Every transaction on Lisk's Mainnet has two associated costs: an L2 execution fee and an L1 data fee. This dual-fee model aligns with Lisk's Layer 2 architecture and its reliance on Ethereum for security and data storage.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. Due to

the structure of this network, it is not only the mainnet that is responsible for energy consumption. In order to calculate the structure adequately, a proportion of the energy consumption of the connected network, ethereum, must also be taken into account, because the connected network is also responsible for security. This proportion is determined on the basis of gas consumption. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Moonriver

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Moonriver	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	26280.00000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Moonriver operates on a Proof of Stake (PoS) consensus mechanism, enhanced by Polkadot's Nominated Proof of Stake (NPoS) model. This structure ensures secure, scalable, and decentralized transaction processing, leveraging the robust Substrate framework.

Core Components:

- Nominated Proof of Stake (NPoS):

Validators are selected through staking by token holders, known as nominators, who delegate their MOVR tokens to trusted validator nodes. Validators with higher stakes and nominations are chosen to validate blocks and secure the network.

- Collator Nodes:

Moonriver employs collator nodes, responsible for aggregating transactions into blocks and submitting them to the Polkadot Relay Chain for final validation. Collators ensure fast block production while relying on Polkadot's shared security.

- Byzantine Fault Tolerance (BFT):

Moonriver integrates BFT properties to handle network disruptions and maintain consensus even if some validators act maliciously or become unavailable.

- Seamless Interoperability:
 - As a parachain within the Polkadot ecosystem, Moonriver benefits from Polkadot's cross-chain messaging protocols, enabling secure and efficient interoperability with other parachains and external blockchains.

S.5 Incentive Mechanisms and Applicable Fees

Moonriver's incentive model ensures active participation from validators, nominators, and developers while maintaining network security and usability.

Incentive Mechanisms:

- Staking Rewards: Validators and nominators earn MOVR tokens for securing the network and validating transactions.
- Collator Rewards: Collators, who propose blocks, are rewarded with MOVR tokens.
- Inflationary Rewards: New MOVR tokens are minted to fund staking and ecosystem development.
- Developer Incentives: A portion of rewards supports dApp development and ecosystem growth.

Applicable Fees:

- Transaction Fees: Paid in MOVR for transfers and smart contract interactions, distributed to validators and collators.
- Gas Fees: Calculated based on transaction complexity, ensuring predictable costs.
- Fee Burning: A portion of fees is burned, reducing token supply over time to support value retention.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. Due to the structure of this network, it is not only the mainnet that is responsible for energy consumption. In order to calculate the structure adequately, a proportion of the energy consumption of the connected network, kusama, must also be taken into account, because the connected network is also responsible for security. This proportion is determined on the basis of gas consumption. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Bittensor

τ

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Bittensor	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/

Field	Value	Unit
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	25228.80000	kWh/a

S.4 Consensus Mechanism

Bittensor employs a Proof-of-Stake consensus mechanism tailored for integrating blockchain technology with decentralized AI, ensuring secure, efficient, and reliable contributions from its participants.

Proof of Stake (PoS) with Neural Consensus:

- Bittensor operates on a PoS consensus model, where validators are selected based on the amount of TAO tokens staked. Validators secure the network by producing and validating blocks, ensuring transaction integrity.
- Neural Consensus Integration: A unique feature of Bittensor is its neural consensus, which evaluates the quality of work performed by AI models on the network. Nodes are incentivized to contribute meaningful computations for tasks like AI training, which are validated through peer review and network-wide voting.
- Dynamic Validator Selection: The network dynamically adjusts validator participation, prioritizing nodes that contribute both computational and staking resources effectively.
- Scalability and Security: The combined PoS and neural consensus model ensures scalability for Alcentric workloads while maintaining blockchain-level security.

S.5 Incentive Mechanisms and Applicable Fees

Bittensor incentivizes network participants through token rewards for securing the network and contributing to its AI capabilities, with a fee structure designed to sustain network operations and encourage participation.

Incentive Mechanism:

- TAO Rewards for Validators: Validators earn TAO tokens as rewards for securing the network, validating transactions, and maintaining blockchain integrity. Rewards are distributed based on the validator's staked TAO tokens and performance in the consensus process.
- Al Contribution Rewards: Nodes contributing to the network's Al computations (e.g., training models) are rewarded in TAO tokens. Rewards are determined by the quality and relevance of contributions, as evaluated through the neural consensus mechanism.
- Delegation Rewards: TAO holders who delegate their tokens to validators earn a share of staking rewards, encouraging broader participation in network security and governance.
- Dynamic Incentive Structure: Rewards are dynamically allocated based on network activity and Al workloads, promoting sustained contribution and high-quality participation.

Applicable Fees:

- Transaction Fees: Users pay transaction fees in TAO tokens for processing transactions on the network. Fees are distributed to validators as additional compensation.
- Al Service Fees: Applications utilizing Bittensor's Al services pay fees in TAO tokens, incentivizing nodes to perform computations and contribute resources.

- Low-Cost Fee Model: The network employs a cost-efficient fee structure to attract developers and users while ensuring sustainability for validators and contributors.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Chiliz

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Chiliz	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	23196.51405	kWh/a

Qualitative information

S.4 Consensus Mechanism

Chiliz is present on the following networks: Binance Beacon Chain, Chiliz, Chiliz Legacy, Ethereum, Solana.

Binance Beacon Chain operated on a Delegated Proof of Stake (DPoS) consensus mechanism before its operations were discontinued in fall 2024 and its migration to Binance Smart Chain; validators were elected by token holders through staking and voting, limiting active participation to a manageable number of nodes while maintaining decentralization; validators were selected based on the staking weight of their delegators, ensuring stakeholder interests were proportionally represented in the validation process; regular validator rotation was implemented to promote fairness and decentralization by allowing multiple participants to contribute to the network; the system was designed to tolerate some degree of validator failures while maintaining the network's operational integrity, ensuring resilience.

The Chiliz Chain operates on a Proof of Staked Authority (PoSA) consensus model, a hybrid that combines Proof of Stake (PoS) and Proof of Authority (PoA) to secure the network through both economic and reputational incentives.

Core Components:

- Proof of Staked Authority (PoSA) Validator Selection: Validators are selected based on their stake of CHZ tokens and their reputation within the network, enhancing security and trustworthiness.
- Collateral Requirement: Validators must lock a portion of CHZ as collateral, which can be slashed if they act maliciously or fail to meet network standards, ensuring alignment with network security.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Chiliz is present on the following networks: Binance Beacon Chain, Chiliz, Chiliz Legacy, Ethereum, Solana.

The Binance Beacon Chain incentivized validators and ensured fee transparency before its migration to Binance Smart Chain; validators were rewarded solely through transaction fees, with no block rewards provided, aligning incentives with network usage and transaction volume; transaction fees were calculated and displayed upfront, ensuring clarity for users and promoting trust in the fee structure; a portion of transaction fees collected in BNB was burned, reducing the overall token supply and contributing to a deflationary economic model.

Chiliz incentivizes validators and delegators to contribute to network security through rewards and transaction fees in CHZ.

Incentive Mechanisms:

- Staking Rewards Validator Rewards: Validators earn CHZ tokens for validating transactions and maintaining network integrity.
- Delegator Rewards: CHZ holders who delegate their tokens to validators share in staking rewards, allowing passive participation in network security.

Applicable Fees:

Transaction Fees CHZ-Based Fees: Transaction fees are paid in CHZ and are distributed to validators as additional compensation, supporting validator incentives and covering network operational costs.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_beacon_chain, ethereum, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Metis Token

Ø

Quantitative information

eld Value		Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Metis Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	21162.76637	kWh/a

Qualitative information

S.4 Consensus Mechanism

Metis Token is present on the following networks: Binance Smart Chain, Ethereum, Metis.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives

- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Metis is an Ethereum Layer-2 scaling solution that utilizes Optimistic Rollup technology to enhance transaction throughput and reduce costs. In this architecture, a sequencer is responsible for aggregating and submitting batches of transactions to the Ethereum mainnet. Metis is transitioning towards a decentralized sequencer model, incorporating a Proof of Stake (PoS) consensus layer based on Tendermint.

This model involves multiple sequencers participating in transaction processing, with roles assigned through a staking mechanism. The decentralized sequencer system is designed to prevent single points of failure and ensure continuous network uptime.

S.5 Incentive Mechanisms and Applicable Fees

Metis Token is present on the following networks: Binance Smart Chain, Ethereum, Metis.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:
 - Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.
- 4. Smart Contract Fees:
 - Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Within the Metis ecosystem, users pay transaction fees in the form of METIS tokens for operations conducted on the Layer-2 network. These fees are distributed among sequencers and validators as rewards for their participation in processing transactions and maintaining network security.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. Due to the structure of this network, it is not only the mainnet that is responsible for energy consumption. In order to calculate the structure adequately, a proportion of the energy consumption of the connected network, ethereum, must also be taken into account, because the connected network is also responsible for security. This proportion is determined on the basis of gas consumption. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum, metis is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Songbird

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Songbird	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	21024.00000	kWh/a

S.4 Consensus Mechanism

Songbird is a decentralized network designed to act as a canary network for the Flare blockchain, enabling the testing of features before they are deployed on the main network. It utilizes the Avalanche consensus mechanism, which combines elements of classical and Nakamoto-style consensus to achieve high throughput and low-latency finality.

S.5 Incentive Mechanisms and Applicable Fees

Songbird incentivizes network participants, particularly validators, by rewarding them with native tokens for securing the network and validating transactions. Validators earn rewards based on their contribution to the consensus process, which helps maintain the integrity and security of the network. Additionally, users can participate in staking to earn rewards, further supporting the network's operations. The fee structure on Songbird is designed to be low and efficient, with transaction fees paid by users for processing their transactions. These fees are used to incentivize validators, cover the operational costs of the network, and ensure the ongoing development and stability of the ecosystem.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

scroll

E

Field Value Unit S.1 Name Finst B.V. 724500UI8UD7HKGVJX65 S.2 Relevant legal entity identifier S.3 Name of the crypto-asset scroll 2024-06-30 S.6 Beginning of the period to which the disclosure relates S.7 End of the period to which the disclosure relates 2025-06-30 20235.60000 S.8 Energy consumption kWh/a

S.4 Consensus Mechanism

Scroll utilizes a Zero-Knowledge Rollup (ZK-Rollup) consensus mechanism built on top of Ethereum's Layer 1 blockchain. ZK-Rollups bundle multiple transactions into a single batch, generating a cryptographic proof (known as a validity proof) to verify the correctness of all transactions in the batch. This proof is then submitted to the Ethereum mainnet, ensuring the integrity and security of the processed transactions. The mechanism offloads computation and storage from Layer 1 while relying on Ethereum's security guarantees for finality.

S.5 Incentive Mechanisms and Applicable Fees

The Scroll network's incentive structures revolve around transaction processing and the maintenance of zk-provers, which are responsible for generating validity proofs. Users pay transaction fees to have their operations included in the network, and these fees cover the computational and storage costs associated with batching and proving transactions. Fees may fluctuate based on the complexity of transactions and network usage. Validators and operators of zk-provers receive compensation to ensure the continued functionality and security of the rollup mechanism.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. Due to the structure of this network, it is not only the mainnet that is responsible for energy consumption. In order to calculate the structure adequately, a proportion of the energy consumption of the connected network, ethereum, must also be taken into account, because the connected network is also responsible for security. This proportion is determined on the basis of gas consumption. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Boba Token

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Boba Token	/

Field	Value	Unit
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	19763.64827	kWh/a

S.4 Consensus Mechanism

Boba Token is present on the following networks: Boba Network, Ethereum.

Boba Network operates as an Ethereum Layer 2 solution using an Optimistic Rollup architecture to improve scalability and reduce transaction costs.

Core Components:

- Optimistic Rollup: Processes transactions off-chain, aggregates them, and submits condensed proofs to the Ethereum mainnet for finalization.
- Sequencer Role: A sequencer organizes and bundles transactions off-chain before submitting the batched data to Ethereum. This enhances transaction throughput and reduces latency.
- Fraud Proofs: Maintains security by allowing users to challenge suspicious transactions. If a transaction is deemed fraudulent, it is corrected on the mainnet, ensuring integrity.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Boba Token is present on the following networks: Boba Network, Ethereum.

The Boba Network incentivizes participation and ensures affordability with flexible fee payment options and staking rewards.

Incentive Mechanisms:

- Staking Rewards: BOBA token holders can stake their tokens to participate in governance and earn staking rewards, encouraging long-term engagement and network growth.
- Sequencer Revenue: The sequencer earns fees for bundling and submitting transactions, incentivizing efficient network operation.

Applicable Fees:

- Dual-Fee Token System: Users can pay transaction fees in BOBA tokens or the base blockchain token (e.g., ETH), offering flexibility.
- Low Transaction Costs: By batching transactions off-chain, Boba significantly reduces the gas fees users pay compared to directly using the Ethereum mainnet.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. Due to the structure of this network, it is not only the mainnet that is responsible for energy consumption. In order to calculate the structure adequately, a proportion of the energy consumption of the connected network, ethereum, must also be taken into account, because the connected network is also responsible for security. This proportion is determined on the basis of gas consumption. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Contentos

C

Quantitative information

eld Value		Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Contentos	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	14979.60000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Contentos is present on the following networks: Binance Beacon Chain, Contentos.

Binance Beacon Chain operated on a Delegated Proof of Stake (DPoS) consensus mechanism before its operations were discontinued in fall 2024 and its migration to Binance Smart Chain; validators were elected by token holders through staking and voting, limiting active participation to a manageable number of nodes while maintaining decentralization; validators were selected based on the staking weight of their delegators, ensuring stakeholder interests were proportionally represented in the validation process; regular validator rotation was implemented to promote fairness and decentralization by allowing multiple participants to contribute to the network; the system was designed to tolerate some degree of validator failures while maintaining the network's operational integrity, ensuring resilience.

Contentos employs a self-adaptive Byzantine Fault Tolerance (saBFT) consensus mechanism, combining Delegated Proof-of-Stake (DPoS) with Byzantine Fault Tolerance (BFT).

S.5 Incentive Mechanisms and Applicable Fees

Contentos is present on the following networks: Binance Beacon Chain, Contentos.

The Binance Beacon Chain incentivized validators and ensured fee transparency before its migration to Binance Smart Chain; validators were rewarded solely through transaction fees, with no block rewards provided, aligning incentives with network usage and transaction volume; transaction fees were calculated and displayed upfront, ensuring clarity for users and promoting trust in the fee structure; a portion of transaction fees collected in BNB was burned, reducing the overall token supply and contributing to a deflationary economic model.

The native token, COS, serves multiple functions within the Contentos ecosystem. Content creators earn COS through content mining.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) binance_beacon_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Coq Inu

Duantitative	inform	ation

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Coq Inu	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	11467.26026	kWh/a

Qualitative information

S.4 Consensus Mechanism

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
 - Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

S.5 Incentive Mechanisms and Applicable Fees

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

- 1. Validators:
- Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.
- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.

- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) avalanche is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Balancer

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/

Field	Value	Unit
S.3 Name of the crypto-asset	Balancer	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	10824.93047	kWh/a

S.4 Consensus Mechanism

Balancer is present on the following networks: Arbitrum, Ethereum, Gnosis Chain, Optimism, Polygon.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

- 1. Optimistic Rollups:
 - Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
 - State Commitments: The state of these transactions is periodically committed to the Ethereum main chain.
- 2. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering transactions and creating batches.
 - State Updates: Sequencers update the state of the rollup and submit these updates to the Ethereum main chain.
 - Block Production: They construct and execute Layer 2 blocks, which are then posted to Ethereum.
- 3. Fraud Proofs:
 - Assumption of Validity: Transactions are assumed to be valid by default.
 - Challenge Period: A specific time window during which anyone can challenge a transaction by submitting a fraud proof.
 - Dispute Resolution: If a transaction is challenged, an interactive verification game is played to determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest participant is penalized.

Consensus Process:

- 1. Transaction Submission: Users submit transactions to the sequencer, which orders them into batches.
- 2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2 state.
- 3. State Commitment: The updated state and the batch of transactions are periodically committed to the Ethereum main chain. This is done by posting the state root (a cryptographic hash representing the state) and transaction data as calldata on Ethereum.

- 4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which anyone can submit a fraud proof if they believe a transaction is invalid.
 - Interactive Verification: The dispute is resolved through an interactive verification game, which involves breaking down the transaction into smaller steps to identify the exact point of fraud.
 - Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses their staked collateral as a penalty.
- 5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final. This means the transactions are accepted as valid, and the state updates are permanent.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Balancer is present on the following networks: Arbitrum, Ethereum, Gnosis Chain, Optimism, Polygon.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.

- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-term network security incentives with token holders' economic interests.
- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

1. Sequencers:

- Transaction Ordering: Sequencers are responsible for ordering and batching transactions offchain. They play a critical role in maintaining the efficiency and speed of the network.

- Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize sequencers to process transactions quickly and accurately.
- 2. Validators and Fraud Proofs:
 - Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default. This allows for quick transaction finality.
 - Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by submitting a fraud proof during a specified challenge period. This mechanism ensures that invalid transactions are detected and reverted.
 - Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent transactions. This incentivizes participants to actively monitor the network for invalid transactions, thereby enhancing security.
- 3. Economic Penalties:
 - Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully challenged, they face economic penalties, such as losing a portion of their staked collateral. This discourages dishonest behavior.
 - Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

- 1. Transaction Fees:
 - Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are generally lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the overall cost per transaction, making it more economical for users.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum.
 - Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions.
- 3. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
- Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, ethereum, gnosis_chain, optimism, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

ZKsync

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	ZKsync	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	6571.64764	kWh/a

Qualitative information

S.4 Consensus Mechanism

zkSync operates as a Layer 2 scaling solution for Ethereum, leveraging zero-knowledge rollups (ZK-Rollups) to enable fast, cost-effective, and secure transactions. This consensus mechanism allows zkSync to offload transaction computation from Ethereum's Layer 1, ensuring scalability while maintaining Ethereum's base-layer security.

Core Components:

- Zero-Knowledge Rollups (ZK-Rollups):

- zkSync aggregates multiple transactions off-chain and processes them in batches. A cryptographic proof, called a validity proof, is generated for each batch and submitted to the Ethereum mainnet. This ensures that all transactions are valid and compliant with Ethereum's rules without processing them individually on Layer 1.
- Validity Proofs:

zkSync uses zk-SNARKs (Succinct Non-Interactive Arguments of Knowledge) for its validity proofs. These proofs provide mathematical guarantees that transactions within a batch are valid, eliminating the need for Ethereum nodes to re-execute off-chain transactions.

- Sequencers:

Transactions on zkSync are ordered and processed by sequencers, which bundle transactions into batches. Sequencers maintain network efficiency and provide fast confirmations.

- Fraud Resistance:

Unlike Optimistic Rollups, zkSync relies on validity proofs rather than fraud proofs, meaning that transactions are final and secure as soon as the validity proof is accepted by Ethereum.

- Data Availability:

All transaction data is stored on-chain, ensuring that the network remains decentralized and users can reconstruct the state of zkSync at any time.

S.5 Incentive Mechanisms and Applicable Fees

zkSync incentivizes network participants through a streamlined fee structure and role-based rewards, designed to ensure security, scalability, and usability for both users and validators.

Incentive Mechanism:

- Validator Rewards: Validators, who generate validity proofs and secure the network, are compensated through transaction fees paid by users. Their role ensures that batches of transactions are processed efficiently and accurately.

- Sequencer Incentives: Sequencers are responsible for bundling and ordering transactions offchain. They earn a share of the transaction fees for maintaining network performance and fast processing times.
- Ecosystem Growth Rewards: zkSync allocates resources to incentivize developers and projects building on its platform, fostering a robust ecosystem of dApps, DeFi protocols, and NFT marketplaces.

Applicable Fees:

- Transaction Fees: Users pay fees in Ether (ETH) for transactions on zkSync. These fees are significantly lower than Ethereum Layer 1 fees, as zkSync processes transactions off-chain and submits only aggregated proofs to the Ethereum mainnet.
- Fee Model: Fees are dynamically calculated based on the complexity of transactions (e.g., token transfers, smart contract interactions) and the cost of submitting validity proofs to Ethereum.
- Scalability Benefits: zkSync's efficient rollup architecture reduces gas fees for users while ensuring that validators and sequencers are appropriately compensated for their roles.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) zksync is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

ChainLink Token

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	ChainLink Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	5553.43418	kWh/a

S.4 Consensus Mechanism

ChainLink Token is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain, Ethereum, Fantom, Gnosis Chain, Optimism, Polygon, Solana.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:

- Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.

- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT) consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

- 1. Lachesis Protocol (aBFT):
 - Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without relying on a central leader, enhancing decentralization and speed.
 - DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG) structure, allowing multiple transactions to be processed in parallel across nodes. This structure supports high throughput, making the network suitable for applications requiring rapid transaction processing.
- 2. Event Blocks and Instant Finality:
 - Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by multiple validators. When enough validators confirm an event block, it becomes part of the Fantom network's history.
 - Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed and cannot be reversed. This property is ideal for applications requiring fast and irreversible transactions.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

- 1. Optimistic Rollups:
 - Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
 - State Commitments: The state of these transactions is periodically committed to the Ethereum main chain.
- 2. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering transactions and creating batches.
 - State Updates: Sequencers update the state of the rollup and submit these updates to the Ethereum main chain.
 - Block Production: They construct and execute Layer 2 blocks, which are then posted to Ethereum.
- 3. Fraud Proofs:
 - Assumption of Validity: Transactions are assumed to be valid by default.
 - Challenge Period: A specific time window during which anyone can challenge a transaction by submitting a fraud proof.
 - Dispute Resolution: If a transaction is challenged, an interactive verification game is played to determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest participant is penalized.

Consensus Process:

- 1. Transaction Submission: Users submit transactions to the sequencer, which orders them into batches.
- 2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2 state.
- 3. State Commitment: The updated state and the batch of transactions are periodically committed to the Ethereum main chain. This is done by posting the state root (a cryptographic hash representing the state) and transaction data as calldata on Ethereum.
- 4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which anyone can submit a fraud proof if they believe a transaction is invalid.
 - Interactive Verification: The dispute is resolved through an interactive verification game, which involves breaking down the transaction into smaller steps to identify the exact point of fraud.
 - Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses their staked collateral as a penalty.
- 5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final. This means the transactions are accepted as valid, and the state updates are permanent.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only

the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.

- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

ChainLink Token is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain, Ethereum, Fantom, Gnosis Chain, Optimism, Polygon, Solana.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.

Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.

- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.

- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:
 - Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.
- 4. Smart Contract Fees:
 - Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Fantom's incentive model promotes network security through staking rewards, transaction fees, and delegation options, encouraging broad participation.

Incentive Mechanisms:

- 1. Staking Rewards for Validators:
 - Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively secure the network.
 - Dynamic Staking Rate: Fantom's staking reward rate is dynamic, adjusting based on total FTM staked across the network. As more FTM is staked, individual rewards may decrease, maintaining a balanced reward structure that supports long-term network security.
- 2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to validators. In return, they share in the staking rewards, encouraging wider participation in securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network's high throughput and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps) requiring frequent transactions.
- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users, fostering a favorable environment for high-volume applications.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-term network security incentives with token holders' economic interests.
- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

- 1. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering and batching transactions offchain. They play a critical role in maintaining the efficiency and speed of the network.
 - Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize sequencers to process transactions quickly and accurately.
- 2. Validators and Fraud Proofs:
 - Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default. This allows for quick transaction finality.
 - Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by submitting a fraud proof during a specified challenge period. This mechanism ensures that invalid transactions are detected and reverted.
 - Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent transactions. This incentivizes participants to actively monitor the network for invalid transactions, thereby enhancing security.
- 3. Economic Penalties:
 - Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully challenged, they face economic penalties, such as losing a portion of their staked collateral. This discourages dishonest behavior.
 - Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

- 1. Transaction Fees:
 - Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are generally lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the overall cost per transaction, making it more economical for users.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum.
 - Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions.
- 3. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, avalanche, binance_smart_chain, ethereum, fantom, gnosis_chain, optimism, polygon, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Pepe

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Рере	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	4663.76657	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the

Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Curve DAO Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Curve DAO Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	4431.95991	kWh/a

Qualitative information

S.4 Consensus Mechanism

Curve DAO Token is present on the following networks: Arbitrum, Ethereum, Fantom, Gnosis Chain, Solana.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT) consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

- 1. Lachesis Protocol (aBFT):
 - Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without relying on a central leader, enhancing decentralization and speed.
 - DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG) structure, allowing multiple transactions to be processed in parallel across nodes. This structure supports high throughput, making the network suitable for applications requiring rapid transaction processing.
- 2. Event Blocks and Instant Finality:
 - Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by multiple validators. When enough validators confirm an event block, it becomes part of the Fantom network's history.
 - Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed and cannot be reversed. This property is ideal for applications requiring fast and irreversible transactions.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of

a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Curve DAO Token is present on the following networks: Arbitrum, Ethereum, Fantom, Gnosis Chain, Solana.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.

- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Fantom's incentive model promotes network security through staking rewards, transaction fees, and delegation options, encouraging broad participation.

Incentive Mechanisms:

- 1. Staking Rewards for Validators:
 - Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively secure the network.
 - Dynamic Staking Rate: Fantom's staking reward rate is dynamic, adjusting based on total FTM staked across the network. As more FTM is staked, individual rewards may decrease, maintaining a balanced reward structure that supports long-term network security.
- 2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to validators. In return, they share in the staking rewards, encouraging wider participation in securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network's high throughput and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps) requiring frequent transactions.
- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users, fostering a favorable environment for high-volume applications.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.

- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-term network security incentives with token holders' economic interests.
- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, ethereum, fantom, gnosis_chain, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Uniswap

13

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Uniswap	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	4252.17739	kWh/a

Qualitative information

S.4 Consensus Mechanism

Uniswap is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum, Polygon.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.

- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Uniswap is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum, Polygon.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.

- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
- Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, binance_smart_chain, ethereum, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Pendle

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Pendle	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	3860.81185	kWh/a

Qualitative information

S.4 Consensus Mechanism

Pendle is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through

staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.

- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Pendle is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.

- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Aave Token

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Aave Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	3836.89431	kWh/a

Qualitative information

S.4 Consensus Mechanism

Aave Token is present on the following networks: Avalanche, Binance Smart Chain, Ethereum, Gnosis Chain, Huobi, Near Protocol, Polygon, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.

- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.

- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and scalability.

Key Features of HECO's Consensus Mechanism:

- 1. Validator Selection: HECO supports up to 21 validators, selected based on their stake in the network.
- 2. Transaction Processing: Validators are responsible for processing transactions and adding blocks to the blockchain.
- 3. Transaction Finality: The consensus mechanism ensures quick finality, allowing for rapid confirmation of transactions.
- 4. Energy Efficiency: By utilizing PoS elements, HECO reduces energy consumption compared to traditional Proof-of-Work systems.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a novel approach called Doomslug, which enables high efficiency, fast transaction processing, and secure finality in its operations.

Core Concepts:

- 1. Doomslug and Proof of Stake:
 - NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR tokens to participate in securing the network. However, NEAR's implementation is enhanced with the Doomslug protocol.
 - Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds of validators approve the block, ensuring rapid transaction confirmation.
- 2. Sharding with Nightshade:
 - NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into multiple shards, enabling parallel processing of transactions across the network, thus significantly increasing throughput. Each shard processes a portion of transactions, and the outcomes are merged into a single "snapshot" block.
 - This sharding approach ensures scalability, allowing the network to grow and handle increasing demand efficiently.

Consensus Process:

- 1. Validator Selection:
 - Validators are selected to propose and validate blocks based on the amount of NEAR tokens staked. This selection process is designed to ensure that only validators with significant stakes and community trust participate in securing the network.
- 2. Transaction Finality:
 - NEAR achieves transaction finality through its PoS-based system, where validators vote on blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug, meaning that no forks can alter the confirmed state.
- 3. Epochs and Rotation:
 - Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in which validators are reshuffled, and new block proposers are selected, ensuring a balance between performance and decentralization.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.

- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Aave Token is present on the following networks: Avalanche, Binance Smart Chain, Ethereum, Gnosis Chain, Huobi, Near Protocol, Polygon, Solana.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.

- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns longterm network security incentives with token holders' economic interests.
- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and scalability.

Incentive Mechanism:

- 1. Validator Rewards:
 - Validators are selected based on their stake in the network. They process transactions and add blocks to the blockchain. Validators receive rewards in the form of transaction fees for their role in maintaining the blockchain's integrity.

2. Staking Participation:

Users can stake Huobi Token (HT) to become validators or delegate their tokens to existing validators. Staking helps secure the network and, in return, participants receive a portion of the transaction fees as rewards.

Applicable Fees:

- 1. Transaction Fees (Gas Fees):
 - Users pay gas fees in HT tokens to execute transactions and interact with smart contracts on the HECO network. These fees compensate validators for processing and validating transactions.

2. Smart Contract Execution Fees:

Deploying and interacting with smart contracts incur additional fees, which are also paid in HT tokens. These fees cover the computational resources required to execute contract code.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5% annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators propose blocks, validate transactions, and receive a share of these rewards based on their staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and improve the chances of being selected to validate transactions. Delegators share in the validator's rewards based on their delegated tokens, incentivizing users to support reliable validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting dishonestly. The slashing mechanism enforces security by deducting a portion of their staked tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total circulating supply, introducing a potential deflationary effect over time. Validators also receive a portion of transaction fees as additional rewards, providing an ongoing incentive for network maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest is distributed to validators as compensation for their work. The burning mechanism helps maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging efficient use of resources and preventing spam attacks.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) avalanche, binance_smart_chain, ethereum, gnosis_chain, huobi, near_protocol, polygon, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier

Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

SHIBA INU

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	SHIBA INU	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	3708.02806	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

SPX6900

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	SPX6900	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	3663.09914	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid

ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

mog_coin

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	mog_coin	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	3246.22701	kWh/a

Qualitative information

S.4 Consensus Mechanism

mog_coin is present on the following networks: Base, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus

mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

mog_coin is present on the following networks: Base, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) base, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally

Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Paxos Gold

0

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Paxos Gold	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	3024.44799	kWh/a

Qualitative information

S.4 Consensus Mechanism

Paxos Gold is present on the following networks: Binance Smart Chain, Ethereum, Solana.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being

selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Paxos Gold is present on the following networks: Binance Smart Chain, Ethereum, Solana.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy

consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Ondo

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Ondo	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	2504.03005	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Artificial Superintelligence Alliance

Field Value Unit S.1 Name Finst B.V. S.2 Relevant legal entity identifier 724500UI8UD7HKGVJX65 Artificial Superintelligence S.3 Name of the crypto-asset Alliance S.6 Beginning of the period to which the disclosure 2024-06-30 relates S.7 End of the period to which the disclosure relates 2025-06-30 kWh/ S.8 Energy consumption 2037.94724 а

Quantitative information

Qualitative information

S.4 Consensus Mechanism

Artificial Superintelligence Alliance is present on the following networks: Binance Smart Chain, Cosmos, Ethereum, Osmosis.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through

staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.

- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The Cosmos network uses the Cosmos SDK, a modular framework that enables developers to build custom, application-specific blockchains. Cosmos SDK chains rely on Tendermint Core, a Byzantine Fault Tolerant (BFT) Proof of Stake (PoS) consensus engine that supports interoperability and fast transaction finality.

Core Components:

- 1. Tendermint BFT Consensus with Proof of Stake:
 - Validator Selection: Cosmos validators are selected based on the amount of ATOM they stake or receive from delegators. These validators participate in block proposal and validation through a two-thirds majority voting system.
 - Security Threshold: Tendermint BFT ensures network security as long as fewer than one-third of validators act maliciously.
- 2. Modular Cosmos SDK Framework:
 - Inter-Blockchain Communication (IBC): The Cosmos SDK supports IBC, allowing seamless interoperability between Cosmos-based blockchains.
 - Application Blockchain Interface (ABCI): This interface separates the consensus layer from the application layer, enabling developers to implement custom logic without modifying the consensus engine.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Osmosis operates on a Proof of Stake (PoS) consensus mechanism, leveraging the Cosmos SDK and Tendermint Core to provide secure, decentralized, and scalable transaction processing.

Core Components:

- Proof of Stake (PoS): Validators are chosen based on the amount of OSMO tokens they stake or are delegated by other token holders. Validators are responsible for validating transactions, producing blocks, and maintaining network security.
- Cosmos SDK and Tendermint Core: Osmosis uses Tendermint Core for Byzantine Fault Tolerant (BFT) consensus, ensuring fast finality and resistance to attacks as long as less than one-third of validators are malicious.
- Decentralized Governance: OSMO token holders can participate in governance by voting on protocol upgrades and network parameters, fostering a community-driven approach to network development.

S.5 Incentive Mechanisms and Applicable Fees

Artificial Superintelligence Alliance is present on the following networks: Binance Smart Chain, Cosmos, Ethereum, Osmosis.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The Cosmos network incentivizes both validators and delegators to secure the network through staking rewards, funded by transaction fees and newly minted ATOM.

Incentive Mechanisms:

1. Staking Rewards for Validators and Delegators:

ATOM Rewards: Validators earn staking rewards in ATOM tokens for participating in consensus, with rewards shared with delegators who stake ATOM through delegation.

2. Slashing for Accountability:

Penalties for Misconduct: Validators who act maliciously, such as double-signing or staying offline, face slashing penalties, which remove a portion of their staked ATOM. Delegators may also experience slashing if their chosen validator is penalized, encouraging careful selection of trustworthy validators.

Applicable Fees:

1. Transaction Fees:

User-Paid Fees in ATOM: All transactions on the Cosmos Hub incur fees paid in ATOM, compensating validators for transaction processing and helping to prevent network spam.

2. Customizable Fee Model:

Custom Token Fees: Cosmos SDK allows individual chains to define their own transaction fees in tokens other than ATOM, supporting varied application requirements within the ecosystem.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid

ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Osmosis incentivizes validators, delegators, and liquidity providers through a combination of staking rewards, transaction fees, and liquidity incentives.

Incentive Mechanisms:

- Validator Rewards: Validators earn rewards from transaction fees and block rewards, distributed in OSMO tokens, for their role in securing the network and processing transactions. Delegators who stake their OSMO tokens with validators receive a share of these rewards.
- Liquidity Provider Rewards: Users providing liquidity to Osmosis pools earn swap fees and may receive additional incentives in the form of OSMO tokens to encourage liquidity provision.
- Superfluid Staking: Liquidity providers can participate in superfluid staking, staking a portion of their OSMO tokens within liquidity pools. This mechanism allows users to earn staking rewards while maintaining liquidity in the pools

Applicable Fees:

Transaction Fees: Users pay transaction fees in OSMO tokens for network activities, including swaps, staking, and governance participation. These fees are distributed to validators and delegators, incentivizing their continued participation and support for network security.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, cosmos, ethereum, osmosis is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Quantitative information

ren

Field	Value	Unit
S.1 Name	Finst B.V.	/

Field	Value	Unit
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	ren	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1881.86981	kWh/a

Qualitative information

S.4 Consensus Mechanism

ren is present on the following networks: Ethereum, Fantom, Gnosis Chain, Near Protocol.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT) consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

- 1. Lachesis Protocol (aBFT):
 - Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without relying on a central leader, enhancing decentralization and speed.
 - DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG) structure, allowing multiple transactions to be processed in parallel across nodes. This structure supports high throughput, making the network suitable for applications requiring rapid transaction processing.
- 2. Event Blocks and Instant Finality:
 - Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by multiple validators. When enough validators confirm an event block, it becomes part of the Fantom network's history.
 - Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed and cannot be reversed. This property is ideal for applications requiring fast and irreversible transactions.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a novel approach called Doomslug, which enables high efficiency, fast transaction processing, and secure finality in its operations.

Core Concepts:

- 1. Doomslug and Proof of Stake:
 - NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR tokens to participate in securing the network. However, NEAR's implementation is enhanced with the Doomslug protocol.
 - Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds of validators approve the block, ensuring rapid transaction confirmation.
- 2. Sharding with Nightshade:
 - NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into multiple shards, enabling parallel processing of transactions across the network, thus significantly increasing throughput. Each shard processes a portion of transactions, and the outcomes are merged into a single "snapshot" block.
 - This sharding approach ensures scalability, allowing the network to grow and handle increasing demand efficiently.

Consensus Process:

- 1. Validator Selection:
 - Validators are selected to propose and validate blocks based on the amount of NEAR tokens staked. This selection process is designed to ensure that only validators with significant stakes and community trust participate in securing the network.
- 2. Transaction Finality:
 - NEAR achieves transaction finality through its PoS-based system, where validators vote on blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug, meaning that no forks can alter the confirmed state.
- 3. Epochs and Rotation:
 - Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in which validators are reshuffled, and new block proposers are selected, ensuring a balance between performance and decentralization.

S.5 Incentive Mechanisms and Applicable Fees

ren is present on the following networks: Ethereum, Fantom, Gnosis Chain, Near Protocol.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Fantom's incentive model promotes network security through staking rewards, transaction fees, and delegation options, encouraging broad participation.

Incentive Mechanisms:

- 1. Staking Rewards for Validators:
 - Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively secure the network.
 - Dynamic Staking Rate: Fantom's staking reward rate is dynamic, adjusting based on total FTM staked across the network. As more FTM is staked, individual rewards may decrease, maintaining a balanced reward structure that supports long-term network security.

2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to validators. In return, they share in the staking rewards, encouraging wider participation in securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network's high throughput and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps) requiring frequent transactions.
- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users, fostering a favorable environment for high-volume applications.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns longterm network security incentives with token holders' economic interests.

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5% annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators propose blocks, validate transactions, and receive a share of these rewards based on their staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and improve the chances of being selected to validate transactions. Delegators share in the validator's rewards based on their delegated tokens, incentivizing users to support reliable validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting dishonestly. The slashing mechanism enforces security by deducting a portion of their staked tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total circulating supply, introducing a potential deflationary effect over time. Validators also receive a portion of transaction fees as additional rewards, providing an ongoing incentive for network maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest is distributed to validators as compensation for their work. The burning mechanism helps maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging efficient use of resources and preventing spam attacks.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, fantom, gnosis_chain, near_protocol is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Axie Infinity Shard

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Axie Infinity Shard	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1853.43499	kWh/a

Quantitative information

Qualitative information

S.4 Consensus Mechanism

Axie Infinity Shard is present on the following networks: Binance Smart Chain, Ethereum, Harmony One, Ronin, Solana.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through

staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.

- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Harmony operates on a consensus mechanism called Effective Proof of Stake (EPoS), designed to balance validator influence and enhance network security while improving transaction scalability.

Core Components:

- 1. Effective Proof of Stake (EPoS):
 - Validator Diversity: EPoS allows a large number of validators to participate and limits the influence of high-stake validators, promoting decentralization and preventing stake centralization.
 - Staking Across Shards: Multiple validators compete within each shard, distributing staking power more broadly and enhancing network security.
- 2. Sharding with PBFT Finality:
 - Parallel Transaction Processing: Harmony's four shards enable independent processing of transactions and smart contracts, enhancing scalability and throughput.
 - Fast Finality with PBFT: Each shard uses a modified Practical Byzantine Fault Tolerance (PBFT) model, ensuring immediate finality once blocks are validated and achieving high transaction speeds.

Ronin utilizes a Delegated Proof of Stake (DPoS) consensus mechanism, where community-elected validators are responsible for securing the network and validating transactions.

Core Components of Ronin's Consensus:

- 1. Delegated Proof of Stake (DPoS):
 - Community Voting for Validator Selection: RON token holders delegate their tokens to vote for validators, who are then selected to produce blocks, validate transactions, and maintain network security. Validators with the most votes are chosen to participate in consensus.
 - Periodic Validator Rotation: Validators are regularly rotated based on community votes, enhancing decentralization and preventing long-term control by any single validator group. This rotation supports both security and fairness.

2. Incentive-Driven Voting System:

Alignment with Community Interests: The voting system ensures that validators remain aligned with community goals. Validators that fail to perform adequately or act against network interests may lose votes and be replaced by more trusted participants.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Axie Infinity Shard is present on the following networks: Binance Smart Chain, Ethereum, Harmony One, Ronin, Solana.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Harmony incentivizes validators and delegators to participate in network security and performance through staking rewards, transaction fees, and a unique reward structure promoting decentralization.

Incentive Mechanisms:

1. Staking Rewards for Validators and Delegators:

ONE Token Rewards: Validators earn ONE tokens for validating transactions and securing the network, with a share of these rewards distributed to delegators based on the amount staked.

- 2. Decentralization Penalty for High Stake:
- Reward Adjustment for Large Stakeholders: Validators with an excessive delegated stake experience reduced rewards, preventing centralization and encouraging a fair distribution of staking power.

Applicable Fees:

1. Transaction Fees:

Harmony charges minimal transaction fees in ONE tokens, benefiting high-frequency applications and providing validators with additional rewards.

Ronin's incentive model combines rewards, slashing mechanisms, and governance features to support network security and encourage active community participation.

Incentive Mechanisms:

- 1. Rewards for Validators and Delegators:
 - Staking Rewards for Validators: Validators earn RON tokens as rewards for successfully producing blocks and validating transactions. These rewards incentivize validators to fulfill their duties diligently, maintaining network stability.
 - Delegator Rewards: Delegators who stake their tokens with selected validators also earn a portion of the staking rewards. This sharing of rewards promotes broad participation from token holders in network security and governance.
- 2. Slashing Mechanism for Accountability:
 - Penalty for Malicious Behavior: A slashing mechanism penalizes validators who act dishonestly or fail to meet performance standards by cutting a portion of their staked RON tokens. This deters misbehavior and encourages responsible participation.
 - Delegator Risk: Delegators who stake with misbehaving validators are also subject to slashing, which encourages them to choose trustworthy validators and monitor performance carefully.
- 3. Governance Participation:
 - RON Token for Governance: Beyond staking and transaction fees, the RON token enables token holders to participate in governance. This includes voting on network upgrades, validator selection, and other protocol decisions, giving token holders a voice in network direction and policy.

Applicable Fees:

Transaction Fees: Fees are paid in RON tokens, contributing to validator rewards and helping to maintain network operations. These fees are designed to be affordable, ensuring accessibility for users while supporting validators' roles.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum, harmony_one, ronin, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information

regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

cyber

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	cyber	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1757.90983	kWh/a

Qualitative information

S.4 Consensus Mechanism

cyber is present on the following networks: Binance Smart Chain, Cyber, Ethereum, Optimism.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

🕞 Finst

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

Cyber operates as a Layer 2 network built on the Ethereum ecosystem, utilizing the OP Stack from Optimism and integrating EigenDA for data availability. The network employs a decentralized sequencer and verifier architecture.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

- 1. Optimistic Rollups:
 - Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
 - State Commitments: The state of these transactions is periodically committed to the Ethereum main chain.
- 2. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering transactions and creating batches.
 - State Updates: Sequencers update the state of the rollup and submit these updates to the Ethereum main chain.
 - Block Production: They construct and execute Layer 2 blocks, which are then posted to Ethereum.
- 3. Fraud Proofs:
 - Assumption of Validity: Transactions are assumed to be valid by default.

- Challenge Period: A specific time window during which anyone can challenge a transaction by submitting a fraud proof.
- Dispute Resolution: If a transaction is challenged, an interactive verification game is played to determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest participant is penalized.

Consensus Process:

- 1. Transaction Submission: Users submit transactions to the sequencer, which orders them into batches.
- 2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2 state.
- 3. State Commitment: The updated state and the batch of transactions are periodically committed to the Ethereum main chain. This is done by posting the state root (a cryptographic hash representing the state) and transaction data as calldata on Ethereum.
- 4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which anyone can submit a fraud proof if they believe a transaction is invalid.
 - Interactive Verification: The dispute is resolved through an interactive verification game, which involves breaking down the transaction into smaller steps to identify the exact point of fraud.
 - Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses their staked collateral as a penalty.
- 5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final. This means the transactions are accepted as valid, and the state updates are permanent.

S.5 Incentive Mechanisms and Applicable Fees

cyber is present on the following networks: Binance Smart Chain, Cyber, Ethereum, Optimism.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:
 - Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.
- 4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The native token, CYBER, serves multiple functions within the Cyber ecosystem. CYBER holders can participate in governance decisions, influencing protocol parameters and development directions. Staking CYBER tokens enables users to secure the network and earn rewards.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

- 1. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering and batching transactions offchain. They play a critical role in maintaining the efficiency and speed of the network.
 - Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize sequencers to process transactions quickly and accurately.
- 2. Validators and Fraud Proofs:
 - Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default. This allows for quick transaction finality.

- Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by submitting a fraud proof during a specified challenge period. This mechanism ensures that invalid transactions are detected and reverted.
- Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent transactions. This incentivizes participants to actively monitor the network for invalid transactions, thereby enhancing security.
- 3. Economic Penalties:
 - Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully challenged, they face economic penalties, such as losing a portion of their staked collateral. This discourages dishonest behavior.
 - Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

- 1. Transaction Fees:
 - Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are generally lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the overall cost per transaction, making it more economical for users.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum.
 - Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions.
- 3. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, cyber, ethereum, optimism is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Render Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Render Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1638.79746	kWh/a

Qualitative information

S.4 Consensus Mechanism

Render Token is present on the following networks: Ethereum, Polygon, Solana.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
- Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Render Token is present on the following networks: Ethereum, Polygon, Solana.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees

associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

- 4. Smart Contract Fees:
 - Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, polygon, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Arbitrum

 \bigotimes

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Arbitrum	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1549.91478	kWh/a

Qualitative information

S.4 Consensus Mechanism

Arbitrum is present on the following networks: Arbitrum, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.

5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Arbitrum is present on the following networks: Arbitrum, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Pudgy Penguins

8

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/

Field	Value	Unit
S.3 Name of the crypto-asset	Pudgy Penguins	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1354.02875	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S

Ethena

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Ethena	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1302.69629	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Liquity

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Liquity	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1244.56724	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the

Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Eigen Layer

Ľ

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Eigen Layer	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1219.37798	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Pirate Nation

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Pirate Nation	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1134.72755	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid

ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

ApeCoin

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	ApeCoin	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1060.14413	kWh/a

Qualitative information

S.4 Consensus Mechanism

ApeCoin is present on the following networks: Ethereum, Polygon.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

ApeCoin is present on the following networks: Ethereum, Polygon.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Convex Token

¢

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Convex Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1044.99083	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Quant

-))

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Quant	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1017.50063	kWh/a

Qualitative information

S.4 Consensus Mechanism

Quant is present on the following networks: Energi, Ethereum.

Energi operates on a Proof of Stake (PoS) consensus mechanism supported by a masternode system. Validators, or "stakers," secure the network by locking up NRG tokens to validate transactions and maintain network integrity.

Core Components:

1. Proof of Stake (PoS):

Validators lock up NRG tokens and earn rewards for confirming transactions based on their staked amount, ensuring active participation in network security.

- 2. Masternode System:
 - Collateral Requirement: To operate a masternode, users must lock up 1,000 NRG as collateral. Masternodes contribute to transaction validation, security, and governance, playing a central role in network functionality.
 - Governance Participation: Masternodes vote on network proposals, protocol changes, and community initiatives, enabling decentralized decision-making.
- 3. Self-Funding Treasury:
 - A portion of block rewards funds the treasury, which supports development, marketing, and community projects, ensuring Energi's growth and development over time

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Quant is present on the following networks: Energi, Ethereum.

Energi incentivizes both stakers and masternodes with block rewards, supporting network security and governance. Transaction fees contribute to network sustainability.

Incentive Mechanisms:

Staking and Masternode Rewards:

- Staker Rewards: Validators earn a portion of block rewards for transaction validation.
- Masternode Rewards: Masternodes receive rewards for their roles in governance and network support, ensuring active engagement in network development.

Applicable Fees:

1. Transaction Fees:

Low Cost: Users pay transaction fees in NRG, which are generally low and provide additional rewards for validators and masternodes, supporting network operations.

2. Balanced Reward Structure:

Inflation Control: Energi's rewards structure is designed to maintain inflation balance with sustainable rewards, incentivizing long-term network participation.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) energi, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Livepeer

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Livepeer	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1009.87119	kWh/a

Qualitative information

S.4 Consensus Mechanism

Livepeer is present on the following networks: Ethereum, Harmony One.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Harmony operates on a consensus mechanism called Effective Proof of Stake (EPoS), designed to balance validator influence and enhance network security while improving transaction scalability.

Core Components:

- 1. Effective Proof of Stake (EPoS):
 - Validator Diversity: EPoS allows a large number of validators to participate and limits the influence of high-stake validators, promoting decentralization and preventing stake centralization.
 - Staking Across Shards: Multiple validators compete within each shard, distributing staking power more broadly and enhancing network security.
- 2. Sharding with PBFT Finality:
 - Parallel Transaction Processing: Harmony's four shards enable independent processing of transactions and smart contracts, enhancing scalability and throughput.
 - Fast Finality with PBFT: Each shard uses a modified Practical Byzantine Fault Tolerance (PBFT) model, ensuring immediate finality once blocks are validated and achieving high transaction speeds.

S.5 Incentive Mechanisms and Applicable Fees

Livepeer is present on the following networks: Ethereum, Harmony One.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Harmony incentivizes validators and delegators to participate in network security and performance through staking rewards, transaction fees, and a unique reward structure promoting decentralization.

Incentive Mechanisms:

1. Staking Rewards for Validators and Delegators:

ONE Token Rewards: Validators earn ONE tokens for validating transactions and securing the network, with a share of these rewards distributed to delegators based on the amount staked.

- 2. Decentralization Penalty for High Stake:
- Reward Adjustment for Large Stakeholders: Validators with an excessive delegated stake experience reduced rewards, preventing centralization and encouraging a fair distribution of staking power.

Applicable Fees:

- 1. Transaction Fees:
 - Harmony charges minimal transaction fees in ONE tokens, benefiting high-frequency applications and providing validators with additional rewards.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, harmony_one is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Status Network Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Status Network Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1001.87845	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the

Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Gala

命

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Gala	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	969.66526	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Maker

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Maker	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	961.16827	kWh/a

Qualitative information

S.4 Consensus Mechanism

Maker is present on the following networks: Avalanche, Binance Smart Chain, Ethereum.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:

- Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.

- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators

and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Maker is present on the following networks: Avalanche, Binance Smart Chain, Ethereum.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

- 1. Validators:
- Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.
- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
- Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) avalanche, binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Xai

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/

Field	Value	Unit
S.3 Name of the crypto-asset	Xai	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	955.52339	kWh/a

Qualitative information

S.4 Consensus Mechanism

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

- 1. Optimistic Rollups:
 - Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
 - State Commitments: The state of these transactions is periodically committed to the Ethereum main chain.
- 2. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering transactions and creating batches.
 - State Updates: Sequencers update the state of the rollup and submit these updates to the Ethereum main chain.
 - Block Production: They construct and execute Layer 2 blocks, which are then posted to Ethereum.
- 3. Fraud Proofs:
 - Assumption of Validity: Transactions are assumed to be valid by default.
 - Challenge Period: A specific time window during which anyone can challenge a transaction by submitting a fraud proof.
 - Dispute Resolution: If a transaction is challenged, an interactive verification game is played to determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest participant is penalized.

Consensus Process:

- 1. Transaction Submission: Users submit transactions to the sequencer, which orders them into batches.
- 2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2 state.
- 3. State Commitment: The updated state and the batch of transactions are periodically committed to the Ethereum main chain. This is done by posting the state root (a cryptographic hash representing the state) and transaction data as calldata on Ethereum.
- 4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which anyone can submit a fraud proof if they believe a transaction is invalid.
 - Interactive Verification: The dispute is resolved through an interactive verification game, which involves breaking down the transaction into smaller steps to identify the exact point of fraud.
 - Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses their staked collateral as a penalty.
- 5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final. This means the transactions are accepted as valid, and the state updates are permanent.

S.5 Incentive Mechanisms and Applicable Fees

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

- 1. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering and batching transactions offchain. They play a critical role in maintaining the efficiency and speed of the network.
 - Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize sequencers to process transactions quickly and accurately.
- 2. Validators and Fraud Proofs:
 - Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default. This allows for quick transaction finality.
 - Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by submitting a fraud proof during a specified challenge period. This mechanism ensures that invalid transactions are detected and reverted.
 - Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent transactions. This incentivizes participants to actively monitor the network for invalid transactions, thereby enhancing security.
- 3. Economic Penalties:
 - Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully challenged, they face economic penalties, such as losing a portion of their staked collateral. This discourages dishonest behavior.
 - Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

- 1. Transaction Fees:
 - Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are generally lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the overall cost per transaction, making it more economical for users.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum.
 - Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions.
- 3. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) optimism is calculated first. For the energy consumption of the token, a fraction of the energy

consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

PancakeSwap

 \bigotimes

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	PancakeSwap	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	874.23542	kWh/a

Qualitative information

S.4 Consensus Mechanism

PancakeSwap is present on the following networks: Aptos Coin, Arbitrum, Base, Binance Smart Chain, Ethereum, Linea, Zksync.

Aptos utilizes a Proof-of-Stake approach combined with a BFT consensus protocol to ensure high throughput, low latency, and secure transaction processing.

Core Components:

- Parallel Execution: Transactions are processed concurrently using Block-STM, a parallel execution engine, enabling high performance and scalability.
- Leader-Based BFT: A leader is selected among validators to propose blocks, while others validate and finalize transactions.
- Dynamic Validator Rotation: Validators are rotated regularly, enhancing decentralization and preventing collusion.
- Instant Finality: Transactions achieve finality once validated, ensuring that they are irreversible.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.

- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

🕞 Finst

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Linea employs Zero-Knowledge Rollups (zk-Rollups) to ensure scalable, secure, and efficient transaction processing while maintaining full compatibility with the Ethereum ecosystem.

Core Components:

- Zero-Knowledge Rollups (zk-Rollups): Transactions are aggregated off-chain into batches, and a single zero-knowledge proof is submitted to the Ethereum mainnet, reducing on-chain congestion and improving scalability.
- Type 2 zkEVM: Linea is fully compatible with the Ethereum Virtual Machine (EVM), enabling seamless integration with Ethereum-based smart contracts and dApps.
- Proof Aggregation: The network employs proof aggregation to finalize multiple batches of transactions into a single zero-knowledge proof, ensuring secure and efficient finalization of Layer 2 activity on the Ethereum mainnet.

zkSync operates as a Layer 2 scaling solution for Ethereum, leveraging zero-knowledge rollups (ZK-Rollups) to enable fast, cost-effective, and secure transactions. This consensus mechanism allows zkSync to offload transaction computation from Ethereum's Layer 1, ensuring scalability while maintaining Ethereum's base-layer security.

Core Components:

- Zero-Knowledge Rollups (ZK-Rollups):

zkSync aggregates multiple transactions off-chain and processes them in batches. A cryptographic proof, called a validity proof, is generated for each batch and submitted to the Ethereum

mainnet. This ensures that all transactions are valid and compliant with Ethereum's rules without processing them individually on Layer 1.

- Validity Proofs:

zkSync uses zk-SNARKs (Succinct Non-Interactive Arguments of Knowledge) for its validity proofs. These proofs provide mathematical guarantees that transactions within a batch are valid, eliminating the need for Ethereum nodes to re-execute off-chain transactions.

- Sequencers:

Transactions on zkSync are ordered and processed by sequencers, which bundle transactions into batches. Sequencers maintain network efficiency and provide fast confirmations.

- Fraud Resistance:

Unlike Optimistic Rollups, zkSync relies on validity proofs rather than fraud proofs, meaning that transactions are final and secure as soon as the validity proof is accepted by Ethereum.

- Data Availability:

All transaction data is stored on-chain, ensuring that the network remains decentralized and users can reconstruct the state of zkSync at any time.

S.5 Incentive Mechanisms and Applicable Fees

PancakeSwap is present on the following networks: Aptos Coin, Arbitrum, Base, Binance Smart Chain, Ethereum, Linea, Zksync.

Incentive Mechanism:

- Validator Rewards: Validators earn rewards in APT tokens for validating transactions and producing blocks. Rewards are distributed proportionally based on the stake of validators and their delegators.
- Delegator Participation: APT token holders can delegate their tokens to validators, earning a share of the staking rewards without running their own nodes.
- Slashing Mechanism: Validators face penalties, such as losing staked tokens, for malicious actions or prolonged inactivity, ensuring accountability and network security.

Applicable Fees:

- Transaction Fees: Users pay transaction fees in APT tokens for sending transactions and interacting with smart contracts.
- Dynamic Fee Adjustment: Fees are dynamically adjusted based on network activity and resource usage, ensuring cost efficiency and preventing congestion.
- Fee Distribution: Transaction fees are distributed among validators and delegators, providing an additional incentive for network participation.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.

- Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
- Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Linea's incentive model aligns validator performance and network security with user needs for low-cost, efficient transaction processing.

Incentive Mechanisms:

Validator Rewards: Validators earn rewards from transaction fees for their role in processing transactions and submitting aggregated proofs to the Ethereum mainnet.

Applicable Fees:

- Transaction Fees: Users pay transaction fees in the network's native token. These fees cover the costs of executing transactions on the Layer 2 network and submitting proofs to the Ethereum mainnet.
- Cost Efficiency: zk-Rollups significantly reduce transaction fees compared to Ethereum mainnet transactions by batching multiple transactions into a single proof, making Linea an economical solution for scalable dApps.

zkSync incentivizes network participants through a streamlined fee structure and role-based rewards, designed to ensure security, scalability, and usability for both users and validators.

Incentive Mechanism:

- Validator Rewards: Validators, who generate validity proofs and secure the network, are compensated through transaction fees paid by users. Their role ensures that batches of transactions are processed efficiently and accurately.
- Sequencer Incentives: Sequencers are responsible for bundling and ordering transactions offchain. They earn a share of the transaction fees for maintaining network performance and fast processing times.
- Ecosystem Growth Rewards: zkSync allocates resources to incentivize developers and projects building on its platform, fostering a robust ecosystem of dApps, DeFi protocols, and NFT marketplaces.

Applicable Fees:

- Transaction Fees: Users pay fees in Ether (ETH) for transactions on zkSync. These fees are significantly lower than Ethereum Layer 1 fees, as zkSync processes transactions off-chain and submits only aggregated proofs to the Ethereum mainnet.
- Fee Model: Fees are dynamically calculated based on the complexity of transactions (e.g., token transfers, smart contract interactions) and the cost of submitting validity proofs to Ethereum.
- Scalability Benefits: zkSync's efficient rollup architecture reduces gas fees for users while ensuring that validators and sequencers are appropriately compensated for their roles.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) aptos_coin, arbitrum, base, binance_smart_chain, ethereum, linea, zksync is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based

🕞 Finst

on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Tellor Tributes

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Tellor Tributes	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	835.84734	kWh/a

Qualitative information

S.4 Consensus Mechanism

Tellor Tributes is present on the following networks: Arbitrum, Ethereum, Gnosis Chain, Optimism, Polygon.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

- 1. Optimistic Rollups:
 - Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
 - State Commitments: The state of these transactions is periodically committed to the Ethereum main chain.
- 2. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering transactions and creating batches.
 - State Updates: Sequencers update the state of the rollup and submit these updates to the Ethereum main chain.
 - Block Production: They construct and execute Layer 2 blocks, which are then posted to Ethereum.
- 3. Fraud Proofs:
 - Assumption of Validity: Transactions are assumed to be valid by default.
 - Challenge Period: A specific time window during which anyone can challenge a transaction by submitting a fraud proof.

- Dispute Resolution: If a transaction is challenged, an interactive verification game is played to determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest participant is penalized.

Consensus Process:

- 1. Transaction Submission: Users submit transactions to the sequencer, which orders them into batches.
- 2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2 state.
- 3. State Commitment: The updated state and the batch of transactions are periodically committed to the Ethereum main chain. This is done by posting the state root (a cryptographic hash representing the state) and transaction data as calldata on Ethereum.
- 4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which anyone can submit a fraud proof if they believe a transaction is invalid.
 - Interactive Verification: The dispute is resolved through an interactive verification game, which involves breaking down the transaction into smaller steps to identify the exact point of fraud.
 - Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses their staked collateral as a penalty.
- 5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final. This means the transactions are accepted as valid, and the state updates are permanent.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.

- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.

- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Tellor Tributes is present on the following networks: Arbitrum, Ethereum, Gnosis Chain, Optimism, Polygon.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.

- Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-term network security incentives with token holders' economic interests.
- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated

Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

- 1. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering and batching transactions offchain. They play a critical role in maintaining the efficiency and speed of the network.
 - Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize sequencers to process transactions quickly and accurately.
- 2. Validators and Fraud Proofs:
 - Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default. This allows for quick transaction finality.
 - Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by submitting a fraud proof during a specified challenge period. This mechanism ensures that invalid transactions are detected and reverted.
 - Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent transactions. This incentivizes participants to actively monitor the network for invalid transactions, thereby enhancing security.
- 3. Economic Penalties:
 - Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully challenged, they face economic penalties, such as losing a portion of their staked collateral. This discourages dishonest behavior.
 - Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

- 1. Transaction Fees:
 - Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are generally lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the overall cost per transaction, making it more economical for users.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum.
 - Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions.
- 3. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, ethereum, gnosis_chain, optimism, polygon is calculated first. For the energy consumption

of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Aethir Token

A

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Aethir Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	798.06345	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Verasity

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Verasity	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	791.64504	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

VELO

`

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	VELO	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	785.53124	kWh/a

Qualitative information

S.4 Consensus Mechanism

VELO is present on the following networks: Binance Smart Chain, Stellar.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

Stellar uses a unique consensus mechanism known as the Stellar Consensus Protocol (SCP).

Core Concepts:

- 1. Federated Byzantine Agreement (FBA):
 - SCP is built on the principles of Federated Byzantine Agreement (FBA), which allows decentralized, leaderless consensus without the need for a closed system of trusted participants.

- Quorum Slices: Each node in the network selects a set of other nodes (quorum slice) that it trusts. Consensus is achieved when these slices overlap and collectively agree on the transaction state.
- 2. Nodes and Validators:
 - Nodes: Nodes running the Stellar software participate in the network by validating transactions and maintaining the ledger.
 - Validators: Nodes that are responsible for validating transactions and reaching consensus on the state of the ledger. Consensus Process
- 3. Transaction Validation:

Transactions are submitted to the network and nodes validate them based on predetermined rules, such as sufficient balances and valid signatures.

- 4. Nomination Phase:
 - Nomination: Nodes nominate values (proposed transactions) that they believe should be included in the next ledger. Nodes communicate their nominations to their quorum slices.
 - Agreement on Nominations: Nodes vote on the nominated values, and through a process of voting and federated agreement, a set of candidate values emerges. This phase continues until nodes agree on a single value or a set of values.
- 5. Ballot Protocol (Voting and Acceptance): Balloting:
 - The agreed-upon values from the nomination phase are then put into ballots. Each ballot goes through multiple rounds of voting, where nodes vote to either accept or reject the proposed values.
 - Federated Voting: Nodes exchange votes within their quorum slices, and if a value receives sufficient votes across overlapping slices, it moves to the next stage.
 - Acceptance and Confirmation: If a value gathers enough votes through multiple stages (prepare, confirm, externalize), it is accepted and externalized as the next state of the ledger.
- 6. Ledger Update:

Once consensus is reached, the new transactions are recorded in the ledger. Nodes update their copies of the ledger to reflect the new state. Security and Economic Incentives

- 7. Trust and Quorum Slices:
 - Nodes are free to choose their own quorum slices, which provides flexibility and decentralization. The overlapping nature of quorum slices ensures that the network can reach consensus even if some nodes are faulty or malicious.
- 8. Stability and Security:

SCP ensures that the network can achieve consensus efficiently without relying on energyintensive mining processes. This makes it environmentally friendly and suitable for highthroughput applications.

9. Incentive Mechanisms:

Unlike Proof of Work (PoW) or Proof of Stake (PoS) systems, Stellar does not rely on direct economic incentives like mining rewards. Instead, the network incentivizes participation through the intrinsic value of maintaining a secure, efficient, and reliable payment network.

S.5 Incentive Mechanisms and Applicable Fees

VELO is present on the following networks: Binance Smart Chain, Stellar.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

Stellar's consensus mechanism, the Stellar Consensus Protocol (SCP), is designed to achieve decentralized and secure transaction validation through a federated Byzantine agreement (FBA) model. Unlike Proof of Work (PoW) or Proof of Stake (PoS) systems, Stellar does not rely on direct economic incentives like mining rewards. Instead, it ensures network security and transaction validation through intrinsic network mechanisms and transaction fees.

Incentive Mechanisms:

- 1. Quorum Slices and Trust:
 - Quorum Slices: Each node in the Stellar network selects other nodes it trusts to form a quorum slice. Consensus is achieved through the intersection of these slices, creating a robust and decentralized trust network.
 - Federated Voting: Nodes communicate their votes within their quorum slices, and through multiple rounds of federated voting, they agree on the transaction state. This process ensures that even if some nodes are compromised, the network can still achieve consensus securely.
- 2. Intrinsic Value and Participation:
 - Network Value: The intrinsic value of participating in a secure, efficient, and reliable payment network incentivizes nodes to act honestly and maintain network security. Organizations and individuals running nodes benefit from the network's functionality and the ability to facilitate transactions.
 - Decentralization: By allowing nodes to choose their own quorum slices, Stellar promotes decentralization, reducing the risk of central points of failure and making the network more resilient to attacks. Fees on the Stellar Blockchain
- 3. Transaction Fees:
 - Flat Fee Structure: Each transaction on the Stellar network incurs a flat fee of 0.00001 XLM (known as a base fee). This low and predictable fee structure makes Stellar suitable for micropayments and high-volume transactions.
 - Spam Prevention: The transaction fee serves as a deterrent against spam attacks. By requiring a small fee for each transaction, Stellar ensures that the network remains efficient and that resources are not wasted on processing malicious or frivolous transactions.
- 4. Operational Costs:
 - Minimal Fees: The minimal transaction fees on Stellar not only prevent spam but also cover the operational costs of running the network. This ensures that the network can sustain itself without placing a significant financial burden on users.
- 5. Reserve Requirements:
 - Account Reserves: To create a new account on the Stellar network, a minimum balance of 1 XLM is required. This reserve requirement prevents the creation of an excessive number of accounts, further protecting the network from spam and ensuring efficient resource usage.
 - Trustline and Offer Reserves: Additional reserve requirements exist for creating trustlines and offers on the Stellar decentralized exchange (DEX). These reserves help maintain network integrity and prevent abuse.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, stellar is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

ether.fi

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	ether.fi	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	758.22083	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of

the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

usual

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	usual	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	752.65013	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Memecoin

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Memecoin	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	743.08306	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

reserve_rights

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	reserve_rights	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	738.73610	kWh/a

Qualitative information

S.4 Consensus Mechanism

reserve_rights is present on the following networks: Base, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

reserve_rights is present on the following networks: Base, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) base, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Worldcoin

⊜

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Worldcoin	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	709.57696	kWh/a

Qualitative information

S.4 Consensus Mechanism

Worldcoin is present on the following networks: Ethereum, Optimism.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

1. Optimistic Rollups:

- Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.

- State Commitments: The state of these transactions is periodically committed to the Ethereum main chain.
- 2. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering transactions and creating batches.
 - State Updates: Sequencers update the state of the rollup and submit these updates to the Ethereum main chain.
 - Block Production: They construct and execute Layer 2 blocks, which are then posted to Ethereum.
- 3. Fraud Proofs:
 - Assumption of Validity: Transactions are assumed to be valid by default.
 - Challenge Period: A specific time window during which anyone can challenge a transaction by submitting a fraud proof.
 - Dispute Resolution: If a transaction is challenged, an interactive verification game is played to determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest participant is penalized.

Consensus Process:

- 1. Transaction Submission: Users submit transactions to the sequencer, which orders them into batches.
- 2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2 state.
- 3. State Commitment: The updated state and the batch of transactions are periodically committed to the Ethereum main chain. This is done by posting the state root (a cryptographic hash representing the state) and transaction data as calldata on Ethereum.
- 4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which anyone can submit a fraud proof if they believe a transaction is invalid.
 - Interactive Verification: The dispute is resolved through an interactive verification game, which involves breaking down the transaction into smaller steps to identify the exact point of fraud.
 - Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses their staked collateral as a penalty.
- 5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final. This means the transactions are accepted as valid, and the state updates are permanent.

S.5 Incentive Mechanisms and Applicable Fees

Worldcoin is present on the following networks: Ethereum, Optimism.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

- 1. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering and batching transactions offchain. They play a critical role in maintaining the efficiency and speed of the network.
 - Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize sequencers to process transactions quickly and accurately.
- 2. Validators and Fraud Proofs:
 - Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default. This allows for quick transaction finality.
 - Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by submitting a fraud proof during a specified challenge period. This mechanism ensures that invalid transactions are detected and reverted.
 - Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent transactions. This incentivizes participants to actively monitor the network for invalid transactions, thereby enhancing security.
- 3. Economic Penalties:
 - Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully challenged, they face economic penalties, such as losing a portion of their staked collateral. This discourages dishonest behavior.
 - Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

- 1. Transaction Fees:
 - Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are generally lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the overall cost per transaction, making it more economical for users.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum.
 - Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions.
- 3. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, optimism is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number

of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Pixels

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Pixels	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	683.84414	kWh/a

Qualitative information

S.4 Consensus Mechanism

Pixels is present on the following networks: Ethereum, Ronin.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Ronin utilizes a Delegated Proof of Stake (DPoS) consensus mechanism, where community-elected validators are responsible for securing the network and validating transactions.

Core Components of Ronin's Consensus:

- 1. Delegated Proof of Stake (DPoS):
 - Community Voting for Validator Selection: RON token holders delegate their tokens to vote for validators, who are then selected to produce blocks, validate transactions, and maintain network security. Validators with the most votes are chosen to participate in consensus.
 - Periodic Validator Rotation: Validators are regularly rotated based on community votes, enhancing decentralization and preventing long-term control by any single validator group. This rotation supports both security and fairness.

2. Incentive-Driven Voting System:

Alignment with Community Interests: The voting system ensures that validators remain aligned with community goals. Validators that fail to perform adequately or act against network interests may lose votes and be replaced by more trusted participants.

S.5 Incentive Mechanisms and Applicable Fees

Pixels is present on the following networks: Ethereum, Ronin.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Ronin's incentive model combines rewards, slashing mechanisms, and governance features to support network security and encourage active community participation.

Incentive Mechanisms:

- 1. Rewards for Validators and Delegators:
 - Staking Rewards for Validators: Validators earn RON tokens as rewards for successfully producing blocks and validating transactions. These rewards incentivize validators to fulfill their duties diligently, maintaining network stability.
 - Delegator Rewards: Delegators who stake their tokens with selected validators also earn a portion of the staking rewards. This sharing of rewards promotes broad participation from token holders in network security and governance.
- 2. Slashing Mechanism for Accountability:
 - Penalty for Malicious Behavior: A slashing mechanism penalizes validators who act dishonestly or fail to meet performance standards by cutting a portion of their staked RON tokens. This deters misbehavior and encourages responsible participation.
 - Delegator Risk: Delegators who stake with misbehaving validators are also subject to slashing, which encourages them to choose trustworthy validators and monitor performance carefully.
- 3. Governance Participation:
 - RON Token for Governance: Beyond staking and transaction fees, the RON token enables token holders to participate in governance. This includes voting on network upgrades, validator selection, and other protocol decisions, giving token holders a voice in network direction and policy.

Applicable Fees:

Transaction Fees: Fees are paid in RON tokens, contributing to validator rewards and helping to maintain network operations. These fees are designed to be affordable, ensuring accessibility for users while supporting validators' roles.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, ronin is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Lido DAO Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Lido DAO Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	658.78609	kWh/a

Qualitative information

S.4 Consensus Mechanism

Lido DAO Token is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum, Solana, Terra Classic.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.

- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:
 - Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

Terra blockchain operates on a Delegated Proof of Stake (DPoS) consensus mechanism, which ensures fast, scalable, and secure transaction processing.

Core Components:

- Delegated Proof of Stake (DPoS):
 - Validators: A limited set of validators are responsible for validating transactions, proposing blocks, and securing the network. Validators are selected based on the amount of LUNA tokens staked, either directly or delegated by token holders.
 - Delegation: LUNA holders can delegate their tokens to validators, allowing them to participate in staking rewards without running their own validator nodes.
 - Rotational Leadership: Validators are selected in a round-robin manner to propose new blocks, ensuring fairness and efficiency in block production.
- Tendermint BFT (Byzantine Fault Tolerance):
 - Terra integrates the Tendermint Core consensus engine, providing fast block finality and resilience against up to one-third of malicious or faulty validators.
 - Finality: Transactions are confirmed once a block is added, reducing the risk of chain reorganizations and ensuring immediate finality.
 - Governance Integration: LUNA token holders participate in governance by voting on proposals related to protocol upgrades, parameter changes, and community decisions, aligning stakeholder incentives with network health.

S.5 Incentive Mechanisms and Applicable Fees

Lido DAO Token is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum, Solana, Terra Classic.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.

- Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more

tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

- 4. Smart Contract Fees:
 - Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

The Terra blockchain's incentive structure is designed to reward network participants, ensure security, and sustain ecosystem growth, while its fee model aligns with its focus on scalability and cost-efficiency.

Incentive Mechanisms:

- Validators: Validators earn staking rewards for their role in securing the network and validating transactions. Rewards are distributed in LUNA tokens, derived from transaction fees and seigniorage revenue.
- Delegators: LUNA holders who delegate their tokens to validators receive a share of staking rewards, proportional to the amount delegated, incentivizing broad participation.
- Seigniorage Rewards: Validators and delegators benefit from seigniorage revenue, generated when new stablecoins (e.g., TerraUSD) are minted. A portion of this revenue is allocated to reward LUNA stakers.
- Stability Incentives: LUNA token holders are incentivized to stake and participate in governance to maintain the stability of Terra's ecosystem and its algorithmic stablecoins.

- Governance Participation Rewards: Validators and delegators have governance voting rights, enabling them to shape the network's future. Participation in governance aligns incentives with long-term ecosystem health.

Applicable Fees:

- Transaction Fees: Users pay fees in LUNA or stablecoins for transactions such as fund transfers, smart contract execution, and staking. These fees are distributed among validators and delegators, providing additional incentives for network security and functionality.
- Dynamic Fee Model: Transaction fees are dynamically adjusted based on network congestion and transaction size. This ensures efficient resource allocation while keeping fees affordable for users.
- Seigniorage Fee: A portion of revenue from stablecoin minting is directed to the treasury and distributed to stakers, reinforcing network participation and development.
- Burning Mechanism: A portion of fees and seigniorage revenue may be burned, reducing LUNA supply over time and contributing to its deflationary tokenomics.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, binance_smart_chain, ethereum, solana, terra_classic is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

FLOKI

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	FLOKI	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	649.40544	kWh/a

Qualitative information

S.4 Consensus Mechanism

FLOKI is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,

but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

FLOKI is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:
 - Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

dogwifhat

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	dogwifhat	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	631.13019	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Graph Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Graph Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	602.31391	kWh/a

Qualitative information

S.4 Consensus Mechanism

Graph Token is present on the following networks: Arbitrum, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Graph Token is present on the following networks: Arbitrum, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.

- Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

SuperVerse

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	SuperVerse	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	602.12011	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of

the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Immutable X

 \mathbb{X}

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Immutable X	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	601.03019	kWh/a

Qualitative information

S.4 Consensus Mechanism

Immutable X is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process

- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Immutable X is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:
 - Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.
- 4. Smart Contract Fees:
 - Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Threshold Network Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Threshold Network Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	595.94389	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

OriginToken

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	OriginToken	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	595.70169	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,

but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

LoopringCoin V2

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	LoopringCoin V2	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	563.60961	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Bonk

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Bonk	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	557.54322	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Morpho Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Morpho Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	556.03088	kWh/a

Qualitative information

S.4 Consensus Mechanism

Morpho Token is present on the following networks: Base, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Morpho Token is present on the following networks: Base, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) base, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Turbo

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Turbo	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	544.23326	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

SAND

S

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	SAND	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	543.85541	kWh/a

Qualitative information

S.4 Consensus Mechanism

SAND is present on the following networks: Ethereum, Polygon, Solana.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

SAND is present on the following networks: Ethereum, Polygon, Solana.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.

This encourages widespread participation in securing the network and ensures decentralization.

- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, polygon, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Dogelon Mars

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/

Field	Value	Unit
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Dogelon Mars	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	520.00417	kWh/a

Qualitative information

S.4 Consensus Mechanism

Dogelon Mars is present on the following networks: Binance Smart Chain, Ethereum, Polygon, Solana.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.

- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.

- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Dogelon Mars is present on the following networks: Binance Smart Chain, Ethereum, Polygon, Solana.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they

have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:
 - Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.
- 3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum, polygon, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

JasmyCoin

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	JasmyCoin	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	519.52841	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the

Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Beam

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Beam	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	518.15207	kWh/a

Qualitative information

S.4 Consensus Mechanism

Beam is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
🕞 Finst

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Beam is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy

consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Euro Coin

۲

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Euro Coin	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	511.41456	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Clearpool

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Clearpool	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	496.39789	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid

ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

SushiSwap

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	SushiSwap	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	488.19851	kWh/a

Qualitative information

S.4 Consensus Mechanism

SushiSwap is present on the following networks: Arbitrum, Ethereum, Fantom, Gnosis Chain, Harmony One, Polygon.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT) consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

- 1. Lachesis Protocol (aBFT):
 - Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without relying on a central leader, enhancing decentralization and speed.
 - DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG) structure, allowing multiple transactions to be processed in parallel across nodes. This structure supports high throughput, making the network suitable for applications requiring rapid transaction processing.
- 2. Event Blocks and Instant Finality:
 - Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by multiple validators. When enough validators confirm an event block, it becomes part of the Fantom network's history.
 - Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed and cannot be reversed. This property is ideal for applications requiring fast and irreversible transactions.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

Harmony operates on a consensus mechanism called Effective Proof of Stake (EPoS), designed to balance validator influence and enhance network security while improving transaction scalability.

Core Components:

1. Effective Proof of Stake (EPoS):

- Validator Diversity: EPoS allows a large number of validators to participate and limits the influence of high-stake validators, promoting decentralization and preventing stake centralization.
- Staking Across Shards: Multiple validators compete within each shard, distributing staking power more broadly and enhancing network security.
- 2. Sharding with PBFT Finality:
 - Parallel Transaction Processing: Harmony's four shards enable independent processing of transactions and smart contracts, enhancing scalability and throughput.
 - Fast Finality with PBFT: Each shard uses a modified Practical Byzantine Fault Tolerance (PBFT) model, ensuring immediate finality once blocks are validated and achieving high transaction speeds.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

SushiSwap is present on the following networks: Arbitrum, Ethereum, Fantom, Gnosis Chain, Harmony One, Polygon.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

1. Validators and Sequencers:

- Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
- Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.

- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Fantom's incentive model promotes network security through staking rewards, transaction fees, and delegation options, encouraging broad participation.

Incentive Mechanisms:

- 1. Staking Rewards for Validators:
 - Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively secure the network.

- Dynamic Staking Rate: Fantom's staking reward rate is dynamic, adjusting based on total FTM staked across the network. As more FTM is staked, individual rewards may decrease, maintaining a balanced reward structure that supports long-term network security.
- 2. Delegation for Token Holders:
 - Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to validators. In return, they share in the staking rewards, encouraging wider participation in securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network's high throughput and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps) requiring frequent transactions.
- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users, fostering a favorable environment for high-volume applications.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-term network security incentives with token holders' economic interests.
- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

Harmony incentivizes validators and delegators to participate in network security and performance through staking rewards, transaction fees, and a unique reward structure promoting decentralization.

Incentive Mechanisms:

1. Staking Rewards for Validators and Delegators:

ONE Token Rewards: Validators earn ONE tokens for validating transactions and securing the network, with a share of these rewards distributed to delegators based on the amount staked.

2. Decentralization Penalty for High Stake:

Reward Adjustment for Large Stakeholders: Validators with an excessive delegated stake experience reduced rewards, preventing centralization and encouraging a fair distribution of staking power.

Applicable Fees:

1. Transaction Fees:

Harmony charges minimal transaction fees in ONE tokens, benefiting high-frequency applications and providing validators with additional rewards.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC

tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, ethereum, fantom, gnosis_chain, harmony_one, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

galxe

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	galxe	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	482.52855	kWh/a

Qualitative information

S.4 Consensus Mechanism

galxe is present on the following networks: Base, Binance Smart Chain, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,

🕞 Finst

but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

galxe is present on the following networks: Base, Binance Smart Chain, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) base, binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

OFFICIAL TRUMP

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	OFFICIAL TRUMP	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	482.42102	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Smooth Love Potion

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Smooth Love Potion	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	473.81498	kWh/a

Qualitative information

S.4 Consensus Mechanism

Smooth Love Potion is present on the following networks: Ethereum, Ronin.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Ronin utilizes a Delegated Proof of Stake (DPoS) consensus mechanism, where community-elected validators are responsible for securing the network and validating transactions.

Core Components of Ronin's Consensus:

- 1. Delegated Proof of Stake (DPoS):
 - Community Voting for Validator Selection: RON token holders delegate their tokens to vote for validators, who are then selected to produce blocks, validate transactions, and maintain network security. Validators with the most votes are chosen to participate in consensus.
 - Periodic Validator Rotation: Validators are regularly rotated based on community votes, enhancing decentralization and preventing long-term control by any single validator group. This rotation supports both security and fairness.
- 2. Incentive-Driven Voting System:
- Alignment with Community Interests: The voting system ensures that validators remain aligned with community goals. Validators that fail to perform adequately or act against network interests may lose votes and be replaced by more trusted participants.

S.5 Incentive Mechanisms and Applicable Fees

Smooth Love Potion is present on the following networks: Ethereum, Ronin.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Ronin's incentive model combines rewards, slashing mechanisms, and governance features to support network security and encourage active community participation.

Incentive Mechanisms:

- 1. Rewards for Validators and Delegators:
 - Staking Rewards for Validators: Validators earn RON tokens as rewards for successfully producing blocks and validating transactions. These rewards incentivize validators to fulfill their duties diligently, maintaining network stability.
 - Delegator Rewards: Delegators who stake their tokens with selected validators also earn a portion of the staking rewards. This sharing of rewards promotes broad participation from token holders in network security and governance.
- 2. Slashing Mechanism for Accountability:
 - Penalty for Malicious Behavior: A slashing mechanism penalizes validators who act dishonestly or fail to meet performance standards by cutting a portion of their staked RON tokens. This deters misbehavior and encourages responsible participation.
 - Delegator Risk: Delegators who stake with misbehaving validators are also subject to slashing, which encourages them to choose trustworthy validators and monitor performance carefully.
- 3. Governance Participation:
 - RON Token for Governance: Beyond staking and transaction fees, the RON token enables token holders to participate in governance. This includes voting on network upgrades, validator selection, and other protocol decisions, giving token holders a voice in network direction and policy.

Applicable Fees:

Transaction Fees: Fees are paid in RON tokens, contributing to validator rewards and helping to maintain network operations. These fees are designed to be affordable, ensuring accessibility for users while supporting validators' roles.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, ronin is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

paal_ai

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/

Field	Value	Unit
S.3 Name of the crypto-asset	paal_ai	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	472.54076	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a

🕞 Finst

precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Wormhole Token

Ø

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Wormhole Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	471.34404	kWh/a

Qualitative information

S.4 Consensus Mechanism

Wormhole Token is present on the following networks: Arbitrum, Ethereum, Optimism, Solana.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator

is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

- 1. Optimistic Rollups:
 - Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
 - State Commitments: The state of these transactions is periodically committed to the Ethereum main chain.
- 2. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering transactions and creating batches.
 - State Updates: Sequencers update the state of the rollup and submit these updates to the Ethereum main chain.
 - Block Production: They construct and execute Layer 2 blocks, which are then posted to Ethereum.
- 3. Fraud Proofs:
 - Assumption of Validity: Transactions are assumed to be valid by default.
 - Challenge Period: A specific time window during which anyone can challenge a transaction by submitting a fraud proof.
 - Dispute Resolution: If a transaction is challenged, an interactive verification game is played to determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest participant is penalized.

Consensus Process:

- 1. Transaction Submission: Users submit transactions to the sequencer, which orders them into batches.
- 2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2 state.
- 3. State Commitment: The updated state and the batch of transactions are periodically committed to the Ethereum main chain. This is done by posting the state root (a cryptographic hash representing the state) and transaction data as calldata on Ethereum.
- 4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which anyone can submit a fraud proof if they believe a transaction is invalid.
 - Interactive Verification: The dispute is resolved through an interactive verification game, which involves breaking down the transaction into smaller steps to identify the exact point of fraud.
 - Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses their staked collateral as a penalty.
- 5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final. This means the transactions are accepted as valid, and the state updates are permanent.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Wormhole Token is present on the following networks: Arbitrum, Ethereum, Optimism, Solana.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

- 1. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering and batching transactions offchain. They play a critical role in maintaining the efficiency and speed of the network.
 - Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize sequencers to process transactions quickly and accurately.
- 2. Validators and Fraud Proofs:
 - Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default. This allows for quick transaction finality.
 - Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by submitting a fraud proof during a specified challenge period. This mechanism ensures that invalid transactions are detected and reverted.
 - Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent transactions. This incentivizes participants to actively monitor the network for invalid transactions, thereby enhancing security.
- 3. Economic Penalties:
 - Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully challenged, they face economic penalties, such as losing a portion of their staked collateral. This discourages dishonest behavior.
 - Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

- 1. Transaction Fees:
 - Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are generally lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the overall cost per transaction, making it more economical for users.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum.
 - Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions.

3. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:
 - Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.
- 3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, ethereum, optimism, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

BitTorrent New

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	BitTorrent New	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	466.60687	kWh/a

Qualitative information

S.4 Consensus Mechanism

BitTorrent New is present on the following networks: Binance Smart Chain, Ethereum, Tron.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial

role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process

- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

The Tron blockchain operates on a Delegated Proof of Stake (DPoS) consensus mechanism, designed to improve scalability, transaction speed, and energy efficiency.

Core Components:

- 1. Delegated Proof of Stake (DPoS): Tron uses DPoS, where token holders vote for a group of delegates known as Super Representatives (SRs)who are responsible for validating transactions and producing new blocks on the network. Token holders can vote for SRs based on their stake in the Tron network, and the top 27 SRs (or more, depending on the protocol version) are selected to participate in the block production process. SRs take turns producing blocks, which are added to the blockchain. This is done on a rotational basis to ensure decentralization and prevent control by a small group of validators.
- 2. Block Production: The Super Representatives generate new blocks and confirm transactions. The Tron blockchain achieves block finality quickly, with block production occurring every 3 seconds, making it highly efficient and capable of processing thousands of transactions per second.
- 3. Voting and Governance: Tron's DPoS system also allows token holders to vote on important network decisions, such as protocol upgrades and changes to the system's parameters. Voting

power is proportional to the amount of TRX (Tron's native token) that a user holds and chooses to stake. This provides a governance system where the community can actively participate in decision-making.

4. Super Representatives: The Super Representatives play a crucial role in maintaining the security and stability of the Tron blockchain. They are responsible for validating transactions, proposing new blocks, and ensuring the overall functionality of the network. Super Representatives are incentivized with block rewards (newly minted TRX tokens) and transaction feesfor their work.

S.5 Incentive Mechanisms and Applicable Fees

BitTorrent New is present on the following networks: Binance Smart Chain, Ethereum, Tron.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

The Tron blockchain uses a Delegated Proof of Stake (DPoS) consensus mechanism to secure its network and incentivize participation.

Incentive Mechanism:

- 1. Super Representatives (SRs) Rewards:
 - Block Rewards: Super Representatives (SRs), who are elected by TRX holders, are rewarded for producing blocks. Each block they produce comes with a block reward in the form of TRX tokens.
 - Transaction Fees: In addition to block rewards, SRs receive transaction fees for validating transactions and including them in blocks. This ensures they are incentivized to process transactions efficiently.
- 2. Voting and Delegation:
 - TRX Staking: TRX holders can stake their tokens and vote for Super Representatives (SRs). When TRX holders vote, they delegate their voting power to SRs, which allows SRs to earn rewards in the form of newly minted TRX tokens.
 - Delegator Rewards: Token holders who delegate their votes to an SR can also receive a share of the rewards. This means delegators share in the block rewards and transaction fees that the SR earns.
 - Incentivizing Participation: The more tokens a user stakes, the more voting power they have, which encourages participation in governance and network security.
- 3. Incentive for SRs:
 - SRs are also incentivized to maintain the health and performance of the network. Their reputation and continued election depend on their ability to produce blocks consistently and efficiently process transactions.

Applicable Fees:

- 1. Transaction Fees:
 - Fee Calculation: Users must pay transaction fees to have their transactions processed. The transaction fee varies based on the complexity of the transaction and the network's current demand. This is paid in TRX tokens. Transaction

- Fee Distribution: Transaction fees are distributed to Super Representatives (SRs), giving them an ongoing income to maintain and support the network.
- 2. Storage Fees:
 - Tron charges storage fees for data storage on the blockchain. This includes storing smart contracts, tokens, and other data on the network. Users are required to pay these fees in TRX tokens to store data.
- 3. Energy and Bandwidth:
 - Energy: Tron uses a resource model that allows users to access network resources like bandwidth and energy through staking. Users who stake their TRX tokens receive \energy

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum, tron is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Ethereum Name Service

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Ethereum Name Service	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	452.19559	kWh/a

Qualitative information

S.4 Consensus Mechanism

Ethereum Name Service is present on the following networks: Ethereum, Solana.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Ethereum Name Service is present on the following networks: Ethereum, Solana.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their

staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Axelar

╳

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Axelar	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/

Field	Value	Unit
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	449.01462	kWh/a

Qualitative information

S.4 Consensus Mechanism

Axelar is present on the following networks: Arbitrum, Avalanche, Base, Binance Smart Chain, Ethereum, Fantom, Linea, Mantle, Optimism, Osmosis, Polygon.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
 - Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.

- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives

- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT) consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

- 1. Lachesis Protocol (aBFT):
 - Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without relying on a central leader, enhancing decentralization and speed.
 - DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG) structure, allowing multiple transactions to be processed in parallel across nodes. This structure supports high throughput, making the network suitable for applications requiring rapid transaction processing.
- 2. Event Blocks and Instant Finality:
 - Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by multiple validators. When enough validators confirm an event block, it becomes part of the Fantom network's history.
 - Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed and cannot be reversed. This property is ideal for applications requiring fast and irreversible transactions.

Linea employs Zero-Knowledge Rollups (zk-Rollups) to ensure scalable, secure, and efficient transaction processing while maintaining full compatibility with the Ethereum ecosystem.

Core Components:

- Zero-Knowledge Rollups (zk-Rollups): Transactions are aggregated off-chain into batches, and a single zero-knowledge proof is submitted to the Ethereum mainnet, reducing on-chain congestion and improving scalability.
- Type 2 zkEVM: Linea is fully compatible with the Ethereum Virtual Machine (EVM), enabling seamless integration with Ethereum-based smart contracts and dApps.

- Proof Aggregation: The network employs proof aggregation to finalize multiple batches of transactions into a single zero-knowledge proof, ensuring secure and efficient finalization of Layer 2 activity on the Ethereum mainnet.

Mantle is a Layer-2 rollup built on top of Ethereum, designed to leverage Ethereum's security and Proof-of-Stake (PoS) consensus without an independent consensus layer.

Core Components of Mantle's Consensus:

1. Ethereum PoS Inheritance:

Layer-2 Rollup Model: Mantle does not operate its own consensus mechanism; instead, it relies on Ethereum's PoS for transaction finalization and network security. As a rollup on Ethereum, Mantle inherits the security guarantees of Ethereum's established PoS model.

2. Rollup Type Options:

Optimistic Rollups or Zero-Knowledge Rollups: Depending on its configuration, Mantle may use either Optimistic Rollups or Zero-Knowledge Rollups (zk-Rollups) to batch transactions. These rollup methods allow Mantle to achieve efficient off-chain processing and on-chain finality by periodically committing transaction data to Ethereum's mainnet.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

- 1. Optimistic Rollups:
 - Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
 - State Commitments: The state of these transactions is periodically committed to the Ethereum main chain.
- 2. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering transactions and creating batches.
 - State Updates: Sequencers update the state of the rollup and submit these updates to the Ethereum main chain.
 - Block Production: They construct and execute Layer 2 blocks, which are then posted to Ethereum.
- 3. Fraud Proofs:
 - Assumption of Validity: Transactions are assumed to be valid by default.
 - Challenge Period: A specific time window during which anyone can challenge a transaction by submitting a fraud proof.
 - Dispute Resolution: If a transaction is challenged, an interactive verification game is played to determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest participant is penalized.

Consensus Process:

- 1. Transaction Submission: Users submit transactions to the sequencer, which orders them into batches.
- 2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2 state.
- 3. State Commitment: The updated state and the batch of transactions are periodically committed to the Ethereum main chain. This is done by posting the state root (a cryptographic hash representing the state) and transaction data as calldata on Ethereum.

- 4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which anyone can submit a fraud proof if they believe a transaction is invalid.
 - Interactive Verification: The dispute is resolved through an interactive verification game, which involves breaking down the transaction into smaller steps to identify the exact point of fraud.
 - Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses their staked collateral as a penalty.
- 5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final. This means the transactions are accepted as valid, and the state updates are permanent.

Osmosis operates on a Proof of Stake (PoS) consensus mechanism, leveraging the Cosmos SDK and Tendermint Core to provide secure, decentralized, and scalable transaction processing.

Core Components:

- Proof of Stake (PoS): Validators are chosen based on the amount of OSMO tokens they stake or are delegated by other token holders. Validators are responsible for validating transactions, producing blocks, and maintaining network security.
- Cosmos SDK and Tendermint Core: Osmosis uses Tendermint Core for Byzantine Fault Tolerant (BFT) consensus, ensuring fast finality and resistance to attacks as long as less than one-third of validators are malicious.
- Decentralized Governance: OSMO token holders can participate in governance by voting on protocol upgrades and network parameters, fostering a community-driven approach to network development.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Axelar is present on the following networks: Arbitrum, Avalanche, Base, Binance Smart Chain, Ethereum, Fantom, Linea, Mantle, Optimism, Osmosis, Polygon.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.

- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.

- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
- Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Fantom's incentive model promotes network security through staking rewards, transaction fees, and delegation options, encouraging broad participation.

Incentive Mechanisms:

- 1. Staking Rewards for Validators:
 - Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively secure the network.

- Dynamic Staking Rate: Fantom's staking reward rate is dynamic, adjusting based on total FTM staked across the network. As more FTM is staked, individual rewards may decrease, maintaining a balanced reward structure that supports long-term network security.
- 2. Delegation for Token Holders:
 - Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to validators. In return, they share in the staking rewards, encouraging wider participation in securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network's high throughput and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps) requiring frequent transactions.
- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users, fostering a favorable environment for high-volume applications.

Linea's incentive model aligns validator performance and network security with user needs for low-cost, efficient transaction processing.

Incentive Mechanisms:

Validator Rewards: Validators earn rewards from transaction fees for their role in processing transactions and submitting aggregated proofs to the Ethereum mainnet.

Applicable Fees:

- Transaction Fees: Users pay transaction fees in the network's native token. These fees cover the costs of executing transactions on the Layer 2 network and submitting proofs to the Ethereum mainnet.
- Cost Efficiency: zk-Rollups significantly reduce transaction fees compared to Ethereum mainnet transactions by batching multiple transactions into a single proof, making Linea an economical solution for scalable dApps.

Mantle aims to reduce transaction fees for users by utilizing Ethereum compatibility, rollup technology, and transaction bundling, offering a cost-effective Layer-2 solution.

Incentive Mechanisms:

- 1. Gas Fee Model:
 - Ethereum Compatibility: Mantle is EVM-compatible, meaning it shares Ethereum's gas fee model. Transactions require users to pay fees in units of gas, with costs varying based on transaction complexity and computational demand.
- 2. Lower Transaction Costs:
 - Off-Chain Processing with Bundling: By processing transactions off-chain and settling data on Ethereum only periodically, Mantle reduces individual transaction costs. This method results in significantly lower fees compared to the Ethereum mainnet.
 - Economies of Scale: Through transaction bundling, Mantle can spread the cost of Ethereum's on-chain settlement across multiple transactions, allowing users to pay only a fraction of the gas fees they would incur directly on Ethereum.

Applicable Fees:

Layer-2 Gas Fees: While Mantle's gas fees are lower than those on Ethereum, they are still measured in units of gas and depend on transaction complexity. The fees reflect the cost of

executing transactions in Mantle's Layer-2 environment while benefiting from reduced overall gas consumption due to batching.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

- 1. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering and batching transactions offchain. They play a critical role in maintaining the efficiency and speed of the network.
 - Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize sequencers to process transactions quickly and accurately.
- 2. Validators and Fraud Proofs:
 - Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default. This allows for quick transaction finality.
 - Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by submitting a fraud proof during a specified challenge period. This mechanism ensures that invalid transactions are detected and reverted.
 - Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent transactions. This incentivizes participants to actively monitor the network for invalid transactions, thereby enhancing security.
- 3. Economic Penalties:
 - Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully challenged, they face economic penalties, such as losing a portion of their staked collateral. This discourages dishonest behavior.
 - Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

- 1. Transaction Fees:
 - Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are generally lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the overall cost per transaction, making it more economical for users.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum.
 - Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions.
- 3. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

Osmosis incentivizes validators, delegators, and liquidity providers through a combination of staking rewards, transaction fees, and liquidity incentives.

Incentive Mechanisms:

- Validator Rewards: Validators earn rewards from transaction fees and block rewards, distributed in OSMO tokens, for their role in securing the network and processing transactions. Delegators who stake their OSMO tokens with validators receive a share of these rewards.
- Liquidity Provider Rewards: Users providing liquidity to Osmosis pools earn swap fees and may receive additional incentives in the form of OSMO tokens to encourage liquidity provision.
- Superfluid Staking: Liquidity providers can participate in superfluid staking, staking a portion of their OSMO tokens within liquidity pools. This mechanism allows users to earn staking rewards while maintaining liquidity in the pools

Applicable Fees:

Transaction Fees: Users pay transaction fees in OSMO tokens for network activities, including swaps, staking, and governance participation. These fees are distributed to validators and delegators, incentivizing their continued participation and support for network security.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, avalanche, base, binance_smart_chain, ethereum, fantom, linea, mantle, optimism, osmosis, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

deBridge

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	deBridge	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	444.91726	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

AltLayer Token

1

Field Value Unit S.1 Name Finst B.V. S.2 Relevant legal entity identifier 724500UI8UD7HKGVJX65 S.3 Name of the crypto-asset AltLayer Token S.6 Beginning of the period to which the disclosure relates 2024-06-30 S.7 End of the period to which the disclosure relates 2025-06-30 S.8 Energy consumption 442.11341 kWh/a

Quantitative information

Qualitative information

S.4 Consensus Mechanism

AltLayer Token is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

AltLayer Token is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:
 - Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.
- 4. Smart Contract Fees:
 - Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Compound

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Compound	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	420.13182	kWh/a

Qualitative information

S.4 Consensus Mechanism

Compound is present on the following networks: Avalanche, Binance Smart Chain, Ethereum, Gnosis Chain, Near Protocol, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
 - Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being

selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a novel approach called Doomslug, which enables high efficiency, fast transaction processing, and secure finality in its operations.

Core Concepts:

- 1. Doomslug and Proof of Stake:
 - NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR tokens to participate in securing the network. However, NEAR's implementation is enhanced with the Doomslug protocol.
 - Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds of validators approve the block, ensuring rapid transaction confirmation.
- 2. Sharding with Nightshade:
 - NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into multiple shards, enabling parallel processing of transactions across the network, thus significantly increasing throughput. Each shard processes a portion of transactions, and the outcomes are merged into a single "snapshot" block.
 - This sharding approach ensures scalability, allowing the network to grow and handle increasing demand efficiently.

Consensus Process:

- 1. Validator Selection:
 - Validators are selected to propose and validate blocks based on the amount of NEAR tokens staked. This selection process is designed to ensure that only validators with significant stakes and community trust participate in securing the network.
- 2. Transaction Finality:
 - NEAR achieves transaction finality through its PoS-based system, where validators vote on blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug, meaning that no forks can alter the confirmed state.
- 3. Epochs and Rotation:
 - Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in which validators are reshuffled, and new block proposers are selected, ensuring a balance between performance and decentralization.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
- Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Compound is present on the following networks: Avalanche, Binance Smart Chain, Ethereum, Gnosis Chain, Near Protocol, Solana.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

1. Validators:

- Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.
- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:
 - New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns longterm network security incentives with token holders' economic interests.
- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

- Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5% annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators propose blocks, validate transactions, and receive a share of these rewards based on their staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad participation.
- 2. Delegation:
 - Token holders can delegate their NEAR tokens to validators to increase the validator's stake and improve the chances of being selected to validate transactions. Delegators share in the validator's rewards based on their delegated tokens, incentivizing users to support reliable validators.
- 3. Slashing and Economic Penalties:
 - Validators face penalties for malicious behavior, such as failing to validate correctly or acting dishonestly. The slashing mechanism enforces security by deducting a portion of their staked tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total circulating supply, introducing a potential deflationary effect over time. Validators also receive a portion of transaction fees as additional rewards, providing an ongoing incentive for network maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest is distributed to validators as compensation for their work. The burning mechanism helps maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging efficient use of resources and preventing spam attacks.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) avalanche, binance_smart_chain, ethereum, gnosis_chain, near_protocol, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Synthetix Network

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Synthetix Network	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	418.72616	kWh/a

Qualitative information

S.4 Consensus Mechanism

Synthetix Network is present on the following networks: Avalanche, Binance Smart Chain, Ethereum, Fantom, Near Protocol, Optimism, Polygon, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
 - Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.

3. Avalanche Protocol:

- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
- Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.

- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT) consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

- 1. Lachesis Protocol (aBFT):
 - Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without relying on a central leader, enhancing decentralization and speed.
 - DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG) structure, allowing multiple transactions to be processed in parallel across nodes. This structure supports high throughput, making the network suitable for applications requiring rapid transaction processing.

- 2. Event Blocks and Instant Finality:
 - Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by multiple validators. When enough validators confirm an event block, it becomes part of the Fantom network's history.
 - Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed and cannot be reversed. This property is ideal for applications requiring fast and irreversible transactions.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a novel approach called Doomslug, which enables high efficiency, fast transaction processing, and secure finality in its operations.

Core Concepts:

- 1. Doomslug and Proof of Stake:
 - NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR tokens to participate in securing the network. However, NEAR's implementation is enhanced with the Doomslug protocol.
 - Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds of validators approve the block, ensuring rapid transaction confirmation.
- 2. Sharding with Nightshade:
 - NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into multiple shards, enabling parallel processing of transactions across the network, thus significantly increasing throughput. Each shard processes a portion of transactions, and the outcomes are merged into a single "snapshot" block.
 - This sharding approach ensures scalability, allowing the network to grow and handle increasing demand efficiently.

Consensus Process:

- 1. Validator Selection:
 - Validators are selected to propose and validate blocks based on the amount of NEAR tokens staked. This selection process is designed to ensure that only validators with significant stakes and community trust participate in securing the network.
- 2. Transaction Finality:
 - NEAR achieves transaction finality through its PoS-based system, where validators vote on blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug, meaning that no forks can alter the confirmed state.
- 3. Epochs and Rotation:
 - Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in which validators are reshuffled, and new block proposers are selected, ensuring a balance between performance and decentralization.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

- 1. Optimistic Rollups:
 - Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
 - State Commitments: The state of these transactions is periodically committed to the Ethereum main chain.

2. Sequencers:

- Transaction Ordering: Sequencers are responsible for ordering transactions and creating batches.
- State Updates: Sequencers update the state of the rollup and submit these updates to the Ethereum main chain.
- Block Production: They construct and execute Layer 2 blocks, which are then posted to Ethereum.
- 3. Fraud Proofs:
 - Assumption of Validity: Transactions are assumed to be valid by default.
 - Challenge Period: A specific time window during which anyone can challenge a transaction by submitting a fraud proof.
 - Dispute Resolution: If a transaction is challenged, an interactive verification game is played to determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest participant is penalized.

Consensus Process:

- 1. Transaction Submission: Users submit transactions to the sequencer, which orders them into batches.
- 2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2 state.
- 3. State Commitment: The updated state and the batch of transactions are periodically committed to the Ethereum main chain. This is done by posting the state root (a cryptographic hash representing the state) and transaction data as calldata on Ethereum.
- 4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which anyone can submit a fraud proof if they believe a transaction is invalid.
 - Interactive Verification: The dispute is resolved through an interactive verification game, which involves breaking down the transaction into smaller steps to identify the exact point of fraud.
 - Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses their staked collateral as a penalty.
- 5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final. This means the transactions are accepted as valid, and the state updates are permanent.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
- Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Synthetix Network is present on the following networks: Avalanche, Binance Smart Chain, Ethereum, Fantom, Near Protocol, Optimism, Polygon, Solana.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

1. Validators:

- Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.
- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:
 - New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Fantom's incentive model promotes network security through staking rewards, transaction fees, and delegation options, encouraging broad participation.

Incentive Mechanisms:

- 1. Staking Rewards for Validators:
 - Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively secure the network.
 - Dynamic Staking Rate: Fantom's staking reward rate is dynamic, adjusting based on total FTM staked across the network. As more FTM is staked, individual rewards may decrease, maintaining a balanced reward structure that supports long-term network security.
- 2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to validators. In return, they share in the staking rewards, encouraging wider participation in securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network's high throughput and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps) requiring frequent transactions.
- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users, fostering a favorable environment for high-volume applications.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5% annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators propose blocks, validate transactions, and receive a share of these rewards based on their staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and improve the chances of being selected to validate transactions. Delegators share in the validator's rewards based on their delegated tokens, incentivizing users to support reliable validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting dishonestly. The slashing mechanism enforces security by deducting a portion of their staked tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total circulating supply, introducing a potential deflationary effect over time. Validators also receive a portion of transaction fees as additional rewards, providing an ongoing incentive for network maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest is distributed to validators as compensation for their work. The burning mechanism helps maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging efficient use of resources and preventing spam attacks.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

- 1. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering and batching transactions offchain. They play a critical role in maintaining the efficiency and speed of the network.
 - Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize sequencers to process transactions quickly and accurately.
- 2. Validators and Fraud Proofs:
 - Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default. This allows for quick transaction finality.
 - Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by submitting a fraud proof during a specified challenge period. This mechanism ensures that invalid transactions are detected and reverted.
 - Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent transactions. This incentivizes participants to actively monitor the network for invalid transactions, thereby enhancing security.
- 3. Economic Penalties:
 - Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully challenged, they face economic penalties, such as losing a portion of their staked collateral. This discourages dishonest behavior.
 - Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

- 1. Transaction Fees:
 - Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are generally lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the overall cost per transaction, making it more economical for users.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum.
 - Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions.
- 3. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) avalanche, binance_smart_chain, ethereum, fantom, near_protocol, optimism, polygon, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

LayerZero

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	LayerZero	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	409.91574	kWh/a

Qualitative information

S.4 Consensus Mechanism

LayerZero is present on the following networks: Arbitrum, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

LayerZero is present on the following networks: Arbitrum, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.

- Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
- Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using

empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

zigchain

վե

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	zigchain	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	409.59359	kWh/a

Qualitative information

S.4 Consensus Mechanism

zigchain is present on the following networks: Binance Smart Chain, Ethereum, Polygon, Solana.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

🕞 Finst

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
- Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

zigchain is present on the following networks: Binance Smart Chain, Ethereum, Polygon, Solana.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees

associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

- 4. Smart Contract Fees:
 - Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum, polygon, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Echelon Prime

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Echelon Prime	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	402.35942	kWh/a

Qualitative information

S.4 Consensus Mechanism

Echelon Prime is present on the following networks: Base, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Echelon Prime is present on the following networks: Base, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) base, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Layer 3

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/

Field	Value	Unit
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Layer 3	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	401.57487	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a

🕞 Finst

precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Frax Share

8

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Frax Share	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	394.67520	kWh/a

Qualitative information

S.4 Consensus Mechanism

Frax Share is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain, Ethereum, Fantom, Solana.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
 - Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being

selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT) consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

- 1. Lachesis Protocol (aBFT):
 - Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without relying on a central leader, enhancing decentralization and speed.
 - DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG) structure, allowing multiple transactions to be processed in parallel across nodes. This structure supports high throughput, making the network suitable for applications requiring rapid transaction processing.
- 2. Event Blocks and Instant Finality:
 - Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by multiple validators. When enough validators confirm an event block, it becomes part of the Fantom network's history.
 - Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed and cannot be reversed. This property is ideal for applications requiring fast and irreversible transactions.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Frax Share is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain, Ethereum, Fantom, Solana.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.

- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Fantom's incentive model promotes network security through staking rewards, transaction fees, and delegation options, encouraging broad participation.

Incentive Mechanisms:

- 1. Staking Rewards for Validators:
 - Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively secure the network.
 - Dynamic Staking Rate: Fantom's staking reward rate is dynamic, adjusting based on total FTM staked across the network. As more FTM is staked, individual rewards may decrease, maintaining a balanced reward structure that supports long-term network security.
- 2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to validators. In return, they share in the staking rewards, encouraging wider participation in securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network's high throughput and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps) requiring frequent transactions.
- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users, fostering a favorable environment for high-volume applications.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their

staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, avalanche, binance_smart_chain, ethereum, fantom, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Bancor

-

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Bancor	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/

Field	Value	Unit
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	391.00191	kWh/a

Qualitative information

S.4 Consensus Mechanism

Bancor is present on the following networks: Ethereum, Gnosis Chain, Solana.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides

a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.

- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Bancor is present on the following networks: Ethereum, Gnosis Chain, Solana.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-term network security incentives with token holders' economic interests.
- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, gnosis_chain, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Myria

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Myria	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	386.80041	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the

Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Decentraland

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Decentraland	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	381.84905	kWh/a

Qualitative information

S.4 Consensus Mechanism

Decentraland is present on the following networks: Ethereum, Gnosis Chain, Solana.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an

economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Decentraland is present on the following networks: Ethereum, Gnosis Chain, Solana.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-term network security incentives with token holders' economic interests.
- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated

Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, gnosis_chain, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Telcoin

C

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Telcoin	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	378.73484	kWh/a

Qualitative information

S.4 Consensus Mechanism

Telcoin is present on the following networks: Ethereum, Polygon.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Telcoin is present on the following networks: Ethereum, Polygon.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Rarible

R

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Rarible	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	369.72500	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator

is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Arkham

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Arkham	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/

Field	Value	Unit
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	361.61115	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

1INCH Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	1INCH Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	358.19100	kWh/a

Qualitative information

S.4 Consensus Mechanism

1INCH Token is present on the following networks: Avalanche, Binance Smart Chain, Ethereum, Gnosis Chain, Near Protocol, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
 - Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,

but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a novel approach called Doomslug, which enables high efficiency, fast transaction processing, and secure finality in its operations.

Core Concepts:

- 1. Doomslug and Proof of Stake:
 - NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR tokens to participate in securing the network. However, NEAR's implementation is enhanced with the Doomslug protocol.
 - Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds of validators approve the block, ensuring rapid transaction confirmation.
- 2. Sharding with Nightshade:
 - NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into multiple shards, enabling parallel processing of transactions across the network, thus significantly increasing throughput. Each shard processes a portion of transactions, and the outcomes are merged into a single "snapshot" block.
 - This sharding approach ensures scalability, allowing the network to grow and handle increasing demand efficiently.

Consensus Process:

- 1. Validator Selection:
 - Validators are selected to propose and validate blocks based on the amount of NEAR tokens staked. This selection process is designed to ensure that only validators with significant stakes and community trust participate in securing the network.
- 2. Transaction Finality:
 - NEAR achieves transaction finality through its PoS-based system, where validators vote on blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug, meaning that no forks can alter the confirmed state.

- 3. Epochs and Rotation:
 - Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in which validators are reshuffled, and new block proposers are selected, ensuring a balance between performance and decentralization.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

1INCH Token is present on the following networks: Avalanche, Binance Smart Chain, Ethereum, Gnosis Chain, Near Protocol, Solana.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

- 1. Validators:
- Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.
- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
- Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-term network security incentives with token holders' economic interests.
- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5% annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators propose blocks, validate transactions, and receive a share of these rewards based on their staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and improve the chances of being selected to validate transactions. Delegators share in the validator's rewards based on their delegated tokens, incentivizing users to support reliable validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting dishonestly. The slashing mechanism enforces security by deducting a portion of their staked tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

- 1. Transaction Fees:
 - Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total circulating supply, introducing a potential deflationary effect over time. Validators also receive a portion of transaction fees as additional rewards, providing an ongoing incentive for network maintenance.
- 2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit proportional to their storage usage, ensuring the efficient use of network resources.

- 3. Redistribution and Burning:
 - A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest is distributed to validators as compensation for their work. The burning mechanism helps maintain long-term economic sustainability and potential value appreciation for NEAR holders.
- 4. Reserve Requirement:
 - Users must maintain a minimum account balance and reserves for data storage, encouraging efficient use of resources and preventing spam attacks.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) avalanche, binance_smart_chain, ethereum, gnosis_chain, near_protocol, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Raydium

R

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Raydium	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	350.20508	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

dYdX

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	dYdX	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	348.54080	kWh/a

Qualitative information

S.4 Consensus Mechanism

dYdX is present on the following networks: Ethereum, Solana.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

dYdX is present on the following networks: Ethereum, Solana.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Amp

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Amp	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	345.98897	kWh/a

Qualitative information

S.4 Consensus Mechanism

Amp is present on the following networks: Ethereum, Near Protocol, Solana.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a novel approach called Doomslug, which enables high efficiency, fast transaction processing, and secure finality in its operations.

Core Concepts:

- 1. Doomslug and Proof of Stake:
 - NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR tokens to participate in securing the network. However, NEAR's implementation is enhanced with the Doomslug protocol.
 - Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds of validators approve the block, ensuring rapid transaction confirmation.
- 2. Sharding with Nightshade:
 - NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into multiple shards, enabling parallel processing of transactions across the network, thus significantly increasing throughput. Each shard processes a portion of transactions, and the outcomes are merged into a single "snapshot" block.
 - This sharding approach ensures scalability, allowing the network to grow and handle increasing demand efficiently.

Consensus Process:

- 1. Validator Selection:
 - Validators are selected to propose and validate blocks based on the amount of NEAR tokens staked. This selection process is designed to ensure that only validators with significant stakes and community trust participate in securing the network.
- 2. Transaction Finality:
 - NEAR achieves transaction finality through its PoS-based system, where validators vote on blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug, meaning that no forks can alter the confirmed state.
- 3. Epochs and Rotation:
 - Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in which validators are reshuffled, and new block proposers are selected, ensuring a balance between performance and decentralization.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Amp is present on the following networks: Ethereum, Near Protocol, Solana.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize participation.

Incentive Mechanisms to Secure Transactions:

- 1. Staking Rewards:
 - Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5% annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators propose blocks, validate transactions, and receive a share of these rewards based on their staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad participation.
- 2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and improve the chances of being selected to validate transactions. Delegators share in the validator's rewards based on their delegated tokens, incentivizing users to support reliable validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting dishonestly. The slashing mechanism enforces security by deducting a portion of their staked tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total circulating supply, introducing a potential deflationary effect over time. Validators also receive a portion of transaction fees as additional rewards, providing an ongoing incentive for network maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest is distributed to validators as compensation for their work. The burning mechanism helps maintain long-term economic sustainability and potential value appreciation for NEAR holders.

- 4. Reserve Requirement:
 - Users must maintain a minimum account balance and reserves for data storage, encouraging efficient use of resources and preventing spam attacks.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, near_protocol, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Aerodrome

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Aerodrome	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	337.35975	kWh/a

Qualitative information

S.4 Consensus Mechanism

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

S.5 Incentive Mechanisms and Applicable Fees

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) base is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Illuvium

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/

Field	Value	Unit
S.3 Name of the crypto-asset	Illuvium	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	337.02740	kWh/a

Qualitative information

S.4 Consensus Mechanism

Illuvium is present on the following networks: Ethereum, Solana.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Illuvium is present on the following networks: Ethereum, Solana.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number

of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

CoW Protocol Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	CoW Protocol Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	334.96867	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Synapse

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Synapse	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	327.98062	kWh/a

Qualitative information

S.4 Consensus Mechanism

Synapse is present on the following networks: Arbitrum, Aurora, Avalanche, Binance Smart Chain, Boba Network, Ethereum, Fantom, Harmony One, Moonriver, Optimism, Polygon.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.

- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

Aurora functions as an Ethereum Virtual Machine (EVM) compatible environment operating atop the NEAR Protocol. It does not possess an independent consensus mechanism but relies on NEAR's Proof-of-Stake (PoS) consensus for transaction validation and network security.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
 - Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through

staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.

- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

Boba Network operates as an Ethereum Layer 2 solution using an Optimistic Rollup architecture to improve scalability and reduce transaction costs.

Core Components:

- Optimistic Rollup: Processes transactions off-chain, aggregates them, and submits condensed proofs to the Ethereum mainnet for finalization.
- Sequencer Role: A sequencer organizes and bundles transactions off-chain before submitting the batched data to Ethereum. This enhances transaction throughput and reduces latency.
- Fraud Proofs: Maintains security by allowing users to challenge suspicious transactions. If a transaction is deemed fraudulent, it is corrected on the mainnet, ensuring integrity.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the

heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT) consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

- 1. Lachesis Protocol (aBFT):
 - Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without relying on a central leader, enhancing decentralization and speed.
 - DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG) structure, allowing multiple transactions to be processed in parallel across nodes. This structure supports high throughput, making the network suitable for applications requiring rapid transaction processing.
- 2. Event Blocks and Instant Finality:
 - Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by multiple validators. When enough validators confirm an event block, it becomes part of the Fantom network's history.
 - Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed and cannot be reversed. This property is ideal for applications requiring fast and irreversible transactions.

Harmony operates on a consensus mechanism called Effective Proof of Stake (EPoS), designed to balance validator influence and enhance network security while improving transaction scalability.

Core Components:

- 1. Effective Proof of Stake (EPoS):
 - Validator Diversity: EPoS allows a large number of validators to participate and limits the influence of high-stake validators, promoting decentralization and preventing stake centralization.
 - Staking Across Shards: Multiple validators compete within each shard, distributing staking power more broadly and enhancing network security.
- 2. Sharding with PBFT Finality:
 - Parallel Transaction Processing: Harmony's four shards enable independent processing of transactions and smart contracts, enhancing scalability and throughput.
 - Fast Finality with PBFT: Each shard uses a modified Practical Byzantine Fault Tolerance (PBFT) model, ensuring immediate finality once blocks are validated and achieving high transaction speeds.

Moonriver operates on a Proof of Stake (PoS) consensus mechanism, enhanced by Polkadot's Nominated Proof of Stake (NPoS) model. This structure ensures secure, scalable, and decentralized transaction processing, leveraging the robust Substrate framework.

Core Components:

- Nominated Proof of Stake (NPoS):
 - Validators are selected through staking by token holders, known as nominators, who delegate their MOVR tokens to trusted validator nodes. Validators with higher stakes and nominations are chosen to validate blocks and secure the network.

- Collator Nodes:

Moonriver employs collator nodes, responsible for aggregating transactions into blocks and submitting them to the Polkadot Relay Chain for final validation. Collators ensure fast block production while relying on Polkadot's shared security.

- Byzantine Fault Tolerance (BFT):

Moonriver integrates BFT properties to handle network disruptions and maintain consensus even if some validators act maliciously or become unavailable.

- Seamless Interoperability:

As a parachain within the Polkadot ecosystem, Moonriver benefits from Polkadot's cross-chain messaging protocols, enabling secure and efficient interoperability with other parachains and external blockchains.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

- 1. Optimistic Rollups:
 - Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
 - State Commitments: The state of these transactions is periodically committed to the Ethereum main chain.
- 2. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering transactions and creating batches.
 - State Updates: Sequencers update the state of the rollup and submit these updates to the Ethereum main chain.
 - Block Production: They construct and execute Layer 2 blocks, which are then posted to Ethereum.
- 3. Fraud Proofs:
 - Assumption of Validity: Transactions are assumed to be valid by default.
 - Challenge Period: A specific time window during which anyone can challenge a transaction by submitting a fraud proof.
 - Dispute Resolution: If a transaction is challenged, an interactive verification game is played to determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest participant is penalized.

Consensus Process:

- 1. Transaction Submission: Users submit transactions to the sequencer, which orders them into batches.
- 2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2 state.
- 3. State Commitment: The updated state and the batch of transactions are periodically committed to the Ethereum main chain. This is done by posting the state root (a cryptographic hash representing the state) and transaction data as calldata on Ethereum.
- 4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which anyone can submit a fraud proof if they believe a transaction is invalid.
 - Interactive Verification: The dispute is resolved through an interactive verification game, which involves breaking down the transaction into smaller steps to identify the exact point of fraud.
 - Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses their staked collateral as a penalty.
- 5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final. This means the transactions are accepted as valid, and the state updates are permanent.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Synapse is present on the following networks: Arbitrum, Aurora, Avalanche, Binance Smart Chain, Boba Network, Ethereum, Fantom, Harmony One, Moonriver, Optimism, Polygon.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

The Aurora network utilizes the AURORA token for governance and staking purposes. Token holders can participate in network governance through the AuroraDAO, influencing protocol decisions and developments.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

- 1. Validators:
- Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.
- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:
 - New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The Boba Network incentivizes participation and ensures affordability with flexible fee payment options and staking rewards.

Incentive Mechanisms:

- Staking Rewards: BOBA token holders can stake their tokens to participate in governance and earn staking rewards, encouraging long-term engagement and network growth.
- Sequencer Revenue: The sequencer earns fees for bundling and submitting transactions, incentivizing efficient network operation.

Applicable Fees:

- Dual-Fee Token System: Users can pay transaction fees in BOBA tokens or the base blockchain token (e.g., ETH), offering flexibility.
- Low Transaction Costs: By batching transactions off-chain, Boba significantly reduces the gas fees users pay compared to directly using the Ethereum mainnet.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Fantom's incentive model promotes network security through staking rewards, transaction fees, and delegation options, encouraging broad participation.

Incentive Mechanisms:

- 1. Staking Rewards for Validators:
 - Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively secure the network.
 - Dynamic Staking Rate: Fantom's staking reward rate is dynamic, adjusting based on total FTM staked across the network. As more FTM is staked, individual rewards may decrease, maintaining a balanced reward structure that supports long-term network security.

2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to validators. In return, they share in the staking rewards, encouraging wider participation in securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network's high throughput and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps) requiring frequent transactions.
- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users, fostering a favorable environment for high-volume applications.

Harmony incentivizes validators and delegators to participate in network security and performance through staking rewards, transaction fees, and a unique reward structure promoting decentralization.

Incentive Mechanisms:

1. Staking Rewards for Validators and Delegators:

ONE Token Rewards: Validators earn ONE tokens for validating transactions and securing the network, with a share of these rewards distributed to delegators based on the amount staked.

- 2. Decentralization Penalty for High Stake:
- Reward Adjustment for Large Stakeholders: Validators with an excessive delegated stake experience reduced rewards, preventing centralization and encouraging a fair distribution of staking power.

Applicable Fees:

1. Transaction Fees:

Harmony charges minimal transaction fees in ONE tokens, benefiting high-frequency applications and providing validators with additional rewards.

Moonriver's incentive model ensures active participation from validators, nominators, and developers while maintaining network security and usability.

Incentive Mechanisms:

- Staking Rewards: Validators and nominators earn MOVR tokens for securing the network and validating transactions.
- Collator Rewards: Collators, who propose blocks, are rewarded with MOVR tokens.
- Inflationary Rewards: New MOVR tokens are minted to fund staking and ecosystem development.
- Developer Incentives: A portion of rewards supports dApp development and ecosystem growth.

Applicable Fees:

- Transaction Fees: Paid in MOVR for transfers and smart contract interactions, distributed to validators and collators.
- Gas Fees: Calculated based on transaction complexity, ensuring predictable costs.
- Fee Burning: A portion of fees is burned, reducing token supply over time to support value retention.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

- 1. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering and batching transactions offchain. They play a critical role in maintaining the efficiency and speed of the network.
 - Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize sequencers to process transactions quickly and accurately.
- 2. Validators and Fraud Proofs:
 - Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default. This allows for quick transaction finality.
 - Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by submitting a fraud proof during a specified challenge period. This mechanism ensures that invalid transactions are detected and reverted.
 - Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent transactions. This incentivizes participants to actively monitor the network for invalid transactions, thereby enhancing security.

- 3. Economic Penalties:
 - Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully challenged, they face economic penalties, such as losing a portion of their staked collateral. This discourages dishonest behavior.
 - Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

- 1. Transaction Fees:
 - Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are generally lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the overall cost per transaction, making it more economical for users.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum.
 - Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions.
- 3. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or

going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, aurora, avalanche, binance_smart_chain, boba_network, ethereum, fantom, harmony_one, moonriver, optimism, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Limewire

豢

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Limewire	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/

Field	Value	Unit
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	311.78361	kWh/a

Qualitative information

S.4 Consensus Mechanism

Limewire is present on the following networks: Base, Binance Smart Chain, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously.

Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.

- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Limewire is present on the following networks: Base, Binance Smart Chain, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.

- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) base, binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

JoeToken

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	JoeToken	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	308.99608	kWh/a

Qualitative information

S.4 Consensus Mechanism

JoeToken is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.

- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:

- Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of

being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.

- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

S.5 Incentive Mechanisms and Applicable Fees

JoeToken is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.

- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.

- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, avalanche, binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

SuperRare

 $\mathbf{\nabla}$

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	SuperRare	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	304.08761	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

LeverFi

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	LeverFi	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	302.99769	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the

Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

StarkNet Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	StarkNet Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	294.64164	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

AlphaToken

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	AlphaToken	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	289.55494	kWh/a

Qualitative information

S.4 Consensus Mechanism

AlphaToken is present on the following networks: Avalanche, Binance Smart Chain, Ethereum.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
 - Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.

- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators

and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

AlphaToken is present on the following networks: Avalanche, Binance Smart Chain, Ethereum.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

- 1. Validators:
- Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.
- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
- Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) avalanche, binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Big Time

Ô

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/

Field	Value	Unit
S.3 Name of the crypto-asset	Big Time	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	288.58653	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a

🕞 Finst

precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Banana

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Banana	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	284.46905	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

AIOZ Network

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	AIOZ Network	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	279.98827	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

JUST

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	JUST	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	273.76646	kWh/a

Qualitative information

S.4 Consensus Mechanism

The Tron blockchain operates on a Delegated Proof of Stake (DPoS) consensus mechanism, designed to improve scalability, transaction speed, and energy efficiency.

Core Components:

1. Delegated Proof of Stake (DPoS): Tron uses DPoS, where token holders vote for a group of delegates known as Super Representatives (SRs)who are responsible for validating transactions and producing new blocks on the network. Token holders can vote for SRs based on their stake in the Tron network, and the top 27 SRs (or more, depending on the protocol version) are selected to participate in the block production process. SRs take turns producing blocks, which are added

to the blockchain. This is done on a rotational basis to ensure decentralization and prevent control by a small group of validators.

- 2. Block Production: The Super Representatives generate new blocks and confirm transactions. The Tron blockchain achieves block finality quickly, with block production occurring every 3 seconds, making it highly efficient and capable of processing thousands of transactions per second.
- 3. Voting and Governance: Tron's DPoS system also allows token holders to vote on important network decisions, such as protocol upgrades and changes to the system's parameters. Voting power is proportional to the amount of TRX (Tron's native token) that a user holds and chooses to stake. This provides a governance system where the community can actively participate in decision-making.
- 4. Super Representatives: The Super Representatives play a crucial role in maintaining the security and stability of the Tron blockchain. They are responsible for validating transactions, proposing new blocks, and ensuring the overall functionality of the network. Super Representatives are incentivized with block rewards (newly minted TRX tokens) and transaction feesfor their work.

S.5 Incentive Mechanisms and Applicable Fees

The Tron blockchain uses a Delegated Proof of Stake (DPoS) consensus mechanism to secure its network and incentivize participation.

Incentive Mechanism:

- 1. Super Representatives (SRs) Rewards:
 - Block Rewards: Super Representatives (SRs), who are elected by TRX holders, are rewarded for producing blocks. Each block they produce comes with a block reward in the form of TRX tokens.
 - Transaction Fees: In addition to block rewards, SRs receive transaction fees for validating transactions and including them in blocks. This ensures they are incentivized to process transactions efficiently.
- 2. Voting and Delegation:
 - TRX Staking: TRX holders can stake their tokens and vote for Super Representatives (SRs). When TRX holders vote, they delegate their voting power to SRs, which allows SRs to earn rewards in the form of newly minted TRX tokens.
 - Delegator Rewards: Token holders who delegate their votes to an SR can also receive a share of the rewards. This means delegators share in the block rewards and transaction fees that the SR earns.
 - Incentivizing Participation: The more tokens a user stakes, the more voting power they have, which encourages participation in governance and network security.
- 3. Incentive for SRs:
 - SRs are also incentivized to maintain the health and performance of the network. Their reputation and continued election depend on their ability to produce blocks consistently and efficiently process transactions.

Applicable Fees:

- 1. Transaction Fees:
 - Fee Calculation: Users must pay transaction fees to have their transactions processed. The transaction fee varies based on the complexity of the transaction and the network's current demand. This is paid in TRX tokens. Transaction
 - Fee Distribution: Transaction fees are distributed to Super Representatives (SRs), giving them an ongoing income to maintain and support the network.

2. Storage Fees:

Tron charges storage fees for data storage on the blockchain. This includes storing smart contracts, tokens, and other data on the network. Users are required to pay these fees in TRX tokens to store data.

3. Energy and Bandwidth:

Energy: Tron uses a resource model that allows users to access network resources like bandwidth and energy through staking. Users who stake their TRX tokens receive \energy

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) tron is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

realio_network

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	realio_network	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	268.94316	kWh/a

Qualitative information

S.4 Consensus Mechanism

realio_network is present on the following networks: Binance Smart Chain, Ethereum, Osmosis, Solana.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Osmosis operates on a Proof of Stake (PoS) consensus mechanism, leveraging the Cosmos SDK and Tendermint Core to provide secure, decentralized, and scalable transaction processing.

Core Components:

- Proof of Stake (PoS): Validators are chosen based on the amount of OSMO tokens they stake or are delegated by other token holders. Validators are responsible for validating transactions, producing blocks, and maintaining network security.
- Cosmos SDK and Tendermint Core: Osmosis uses Tendermint Core for Byzantine Fault Tolerant (BFT) consensus, ensuring fast finality and resistance to attacks as long as less than one-third of validators are malicious.
- Decentralized Governance: OSMO token holders can participate in governance by voting on protocol upgrades and network parameters, fostering a community-driven approach to network development.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:
 - Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

realio_network is present on the following networks: Binance Smart Chain, Ethereum, Osmosis, Solana.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Osmosis incentivizes validators, delegators, and liquidity providers through a combination of staking rewards, transaction fees, and liquidity incentives.

Incentive Mechanisms:

- Validator Rewards: Validators earn rewards from transaction fees and block rewards, distributed in OSMO tokens, for their role in securing the network and processing transactions. Delegators who stake their OSMO tokens with validators receive a share of these rewards.
- Liquidity Provider Rewards: Users providing liquidity to Osmosis pools earn swap fees and may receive additional incentives in the form of OSMO tokens to encourage liquidity provision.
- Superfluid Staking: Liquidity providers can participate in superfluid staking, staking a portion of their OSMO tokens within liquidity pools. This mechanism allows users to earn staking rewards while maintaining liquidity in the pools

Applicable Fees:

Transaction Fees: Users pay transaction fees in OSMO tokens for network activities, including swaps, staking, and governance participation. These fees are distributed to validators and delegators, incentivizing their continued participation and support for network security.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum, osmosis, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the

energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

StargateToken

 \Leftrightarrow

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	StargateToken	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	261.94227	kWh/a

Qualitative information

S.4 Consensus Mechanism

StargateToken is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain, Ethereum, Fantom, Polygon.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
 - Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial

role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process

- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT) consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

- 1. Lachesis Protocol (aBFT):
 - Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without relying on a central leader, enhancing decentralization and speed.
 - DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG) structure, allowing multiple transactions to be processed in parallel across nodes. This structure supports high throughput, making the network suitable for applications requiring rapid transaction processing.
- 2. Event Blocks and Instant Finality:
 - Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by multiple validators. When enough validators confirm an event block, it becomes part of the Fantom network's history.

- Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed and cannot be reversed. This property is ideal for applications requiring fast and irreversible transactions.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

StargateToken is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain, Ethereum, Fantom, Polygon.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.

- Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.

- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:
 - New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid

ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Fantom's incentive model promotes network security through staking rewards, transaction fees, and delegation options, encouraging broad participation.

Incentive Mechanisms:

- 1. Staking Rewards for Validators:
 - Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively secure the network.
 - Dynamic Staking Rate: Fantom's staking reward rate is dynamic, adjusting based on total FTM staked across the network. As more FTM is staked, individual rewards may decrease, maintaining a balanced reward structure that supports long-term network security.
- 2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to validators. In return, they share in the staking rewards, encouraging wider participation in securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network's high throughput and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps) requiring frequent transactions.
- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users, fostering a favorable environment for high-volume applications.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
- Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, avalanche, binance_smart_chain, ethereum, fantom, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Dexe

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Dexe	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	258.96007	kWh/a

Qualitative information

S.4 Consensus Mechanism

Dexe is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously.

Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.

- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Dexe is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Kamino

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Kamino	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	240.50621	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

yearn finance

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	yearn finance	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	239.43732	kWh/a

Qualitative information

S.4 Consensus Mechanism

yearn finance is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain, Ethereum, Fantom, Gnosis Chain, Huobi, Near Protocol, Solana.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:

- Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.

- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT) consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

- 1. Lachesis Protocol (aBFT):
 - Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without relying on a central leader, enhancing decentralization and speed.
 - DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG) structure, allowing multiple transactions to be processed in parallel across nodes. This structure supports high throughput, making the network suitable for applications requiring rapid transaction processing.
- 2. Event Blocks and Instant Finality:
 - Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by multiple validators. When enough validators confirm an event block, it becomes part of the Fantom network's history.
 - Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed and cannot be reversed. This property is ideal for applications requiring fast and irreversible transactions.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and scalability.

Key Features of HECO's Consensus Mechanism:

- 1. Validator Selection: HECO supports up to 21 validators, selected based on their stake in the network.
- 2. Transaction Processing: Validators are responsible for processing transactions and adding blocks to the blockchain.
- 3. Transaction Finality: The consensus mechanism ensures quick finality, allowing for rapid confirmation of transactions.
- 4. Energy Efficiency: By utilizing PoS elements, HECO reduces energy consumption compared to traditional Proof-of-Work systems.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a novel approach called Doomslug, which enables high efficiency, fast transaction processing, and secure finality in its operations.

Core Concepts:

- 1. Doomslug and Proof of Stake:
 - NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR tokens to participate in securing the network. However, NEAR's implementation is enhanced with the Doomslug protocol.
 - Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds of validators approve the block, ensuring rapid transaction confirmation.
- 2. Sharding with Nightshade:
 - NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into multiple shards, enabling parallel processing of transactions across the network, thus significantly increasing throughput. Each shard processes a portion of transactions, and the outcomes are merged into a single "snapshot" block.
 - This sharding approach ensures scalability, allowing the network to grow and handle increasing demand efficiently.

Consensus Process:

- 1. Validator Selection:
 - Validators are selected to propose and validate blocks based on the amount of NEAR tokens staked. This selection process is designed to ensure that only validators with significant stakes and community trust participate in securing the network.
- 2. Transaction Finality:
 - NEAR achieves transaction finality through its PoS-based system, where validators vote on blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug, meaning that no forks can alter the confirmed state.
- 3. Epochs and Rotation:
 - Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in which validators are reshuffled, and new block proposers are selected, ensuring a balance between performance and decentralization.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:
 - Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

yearn finance is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain, Ethereum, Fantom, Gnosis Chain, Huobi, Near Protocol, Solana.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.

- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Fantom's incentive model promotes network security through staking rewards, transaction fees, and delegation options, encouraging broad participation.

Incentive Mechanisms:

- 1. Staking Rewards for Validators:
 - Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively secure the network.
 - Dynamic Staking Rate: Fantom's staking reward rate is dynamic, adjusting based on total FTM staked across the network. As more FTM is staked, individual rewards may decrease, maintaining a balanced reward structure that supports long-term network security.
- 2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to validators. In return, they share in the staking rewards, encouraging wider participation in securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network's high throughput and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps) requiring frequent transactions.
- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users, fostering a favorable environment for high-volume applications.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-term network security incentives with token holders' economic interests.
- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to

validators as part of their compensation, aligning their rewards with network activity. Delegated Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and scalability.

Incentive Mechanism:

1. Validator Rewards:

Validators are selected based on their stake in the network. They process transactions and add blocks to the blockchain. Validators receive rewards in the form of transaction fees for their role in maintaining the blockchain's integrity.

2. Staking Participation:

Users can stake Huobi Token (HT) to become validators or delegate their tokens to existing validators. Staking helps secure the network and, in return, participants receive a portion of the transaction fees as rewards.

Applicable Fees:

1. Transaction Fees (Gas Fees):

Users pay gas fees in HT tokens to execute transactions and interact with smart contracts on the HECO network. These fees compensate validators for processing and validating transactions.

2. Smart Contract Execution Fees:

Deploying and interacting with smart contracts incur additional fees, which are also paid in HT tokens. These fees cover the computational resources required to execute contract code.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5% annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators propose blocks, validate transactions, and receive a share of these rewards based on their staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and improve the chances of being selected to validate transactions. Delegators share in the validator's rewards based on their delegated tokens, incentivizing users to support reliable validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting dishonestly. The slashing mechanism enforces security by deducting a portion of their staked tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total circulating supply, introducing a potential deflationary effect over time. Validators also receive a portion of transaction fees as additional rewards, providing an ongoing incentive for network maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest is distributed to validators as compensation for their work. The burning mechanism helps maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging efficient use of resources and preventing spam attacks.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, avalanche, binance_smart_chain, ethereum, fantom, gnosis_chain, huobi, near_protocol, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

UMA Voting Token v1

ШМП

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	UMA Voting Token v1	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	238.57132	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator

is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

swell

4

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	swell	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/

Field	Value	Unit
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	229.73086	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Helium

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Helium	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	226.75727	kWh/a

Qualitative information

S.4 Consensus Mechanism

Helium is present on the following networks: Helium, Solana.

Helium operates on a unique consensus model called Proof of Coverage (PoC), optimized for decentralized, location-based verification and low-power wireless IoT networks.

Core Components of Helium's Consensus:

- 1. Proof of Coverage (PoC):
 - Hotspot Verification: PoC is a consensus protocol designed specifically for Helium, ensuring that network nodes, known as hotspots, provide valid wireless coverage in their claimed location.
 - Challenge System: Hotspots are randomly selected to participate in PoC challenges involving three roles:
 - Challenger: Initiates the verification process.
 - Transmitter: Broadcasts signals to other hotspots.
 - Witness: Confirms signal receipt, verifying that coverage is active in a specific location.
 - Off-Chain Processing on Solana: Helium's PoC is processed off-chain on Solana, with results stored on Solana's blockchain to reduce on-chain resource usage while maintaining decentralized verification. Solana itself is secured through a Proof-of-Stake (PoS) mechanism.
- 2. LongFi Protocol: Helium utilizes LongFi, a protocol that integrates LoRaWAN technology with blockchain. This protocol supports low-power, long-range communication ideal for IoT devices, optimizing for low bandwidth and extensive range applications.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides

a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.

- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Helium is present on the following networks: Helium, Solana.

Helium's incentive structure rewards hotspot operators for verifying coverage and transmitting IoT data, aligning rewards with network participation and actual service provision.

Incentive Mechanisms:

- 1. Hotspot Operator Rewards:
 - Hotspot operators earn Helium's native HNT tokens as rewards for participating in PoC challenges and transmitting IoT data. The amount of HNT earned depends on the PoC verification results and the volume of data transmitted through their hotspots.
- 2. Solana Validators:

Validators on Solana's network process Helium transactions and receive staking rewards in Solana's native token, SOL, contributing to Helium's transaction verification.

Applicable Fees:

- Usage Fees with DC: IoT device operators pay for network usage with Data Credits, which are generated by burning HNT tokens. This model decouples usage costs from HNT's market price, keeping transaction costs stable.
- HNT Burn Mechanism: The burning of HNT to generate Data Credits ties network utility to HNT token demand, creating a feedback loop that supports token stability and incentivizes participation in network services.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Basic Attention Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Basic Attention Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	220.52962	kWh/a

Qualitative information

S.4 Consensus Mechanism

Basic Attention Token is present on the following networks: Avalanche, Binance Smart Chain, Ethereum, Gnosis Chain, Near Protocol, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
 - Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a novel approach called Doomslug, which enables high efficiency, fast transaction processing, and secure finality in its operations.

Core Concepts:

- 1. Doomslug and Proof of Stake:
 - NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR tokens to participate in securing the network. However, NEAR's implementation is enhanced with the Doomslug protocol.
 - Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds of validators approve the block, ensuring rapid transaction confirmation.
- 2. Sharding with Nightshade:
 - NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into multiple shards, enabling parallel processing of transactions across the network, thus significantly increasing throughput. Each shard processes a portion of transactions, and the outcomes are merged into a single "snapshot" block.
 - This sharding approach ensures scalability, allowing the network to grow and handle increasing demand efficiently.

Consensus Process:

- 1. Validator Selection:
 - Validators are selected to propose and validate blocks based on the amount of NEAR tokens staked. This selection process is designed to ensure that only validators with significant stakes and community trust participate in securing the network.
- 2. Transaction Finality:
 - NEAR achieves transaction finality through its PoS-based system, where validators vote on blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug, meaning that no forks can alter the confirmed state.
- 3. Epochs and Rotation:
 - Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in which validators are reshuffled, and new block proposers are selected, ensuring a balance between performance and decentralization.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Basic Attention Token is present on the following networks: Avalanche, Binance Smart Chain, Ethereum, Gnosis Chain, Near Protocol, Solana.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

- 1. Validators:
- Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.
- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-term network security incentives with token holders' economic interests.
- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5% annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators propose blocks, validate transactions, and receive a share of these rewards based on their staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and improve the chances of being selected to validate transactions. Delegators share in the validator's rewards based on their delegated tokens, incentivizing users to support reliable validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting dishonestly. The slashing mechanism enforces security by deducting a portion of their staked tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total circulating supply, introducing a potential deflationary effect over time. Validators also receive a portion of transaction fees as additional rewards, providing an ongoing incentive for network maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest is distributed to validators as compensation for their work. The burning mechanism helps maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging efficient use of resources and preventing spam attacks.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) avalanche, binance_smart_chain, ethereum, gnosis_chain, near_protocol, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

BENQI

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	BENQI	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	214.61244	kWh/a

Qualitative information

S.4 Consensus Mechanism

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
 - Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

S.5 Incentive Mechanisms and Applicable Fees

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

1. Validators:

- Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.
- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:
 - New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) avalanche is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of

the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Audius

4

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Audius	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	211.65144	kWh/a

Qualitative information

S.4 Consensus Mechanism

Audius is present on the following networks: Ethereum, Gnosis Chain, Solana.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating

an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Audius is present on the following networks: Ethereum, Gnosis Chain, Solana.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-term network security incentives with token holders' economic interests.
- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, gnosis_chain, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Moo Deng

-			• -	. •						•	
O	แล	nt	ita	tıν	e i	nt	or	m	ati	O	n
Ľ	au				·		~		au		•••

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Moo Deng	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	209.63799	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.

- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the

network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

DIA

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	DIA	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	207.08475	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Mask Network

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Mask Network	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	205.22279	kWh/a

Qualitative information

S.4 Consensus Mechanism

Mask Network is present on the following networks: Binance Smart Chain, Ethereum, Polygon.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of

being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.

- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.

- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Mask Network is present on the following networks: Binance Smart Chain, Ethereum, Polygon.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees

associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

zentry

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	zentry	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	200.40507	kWh/a

Qualitative information

S.4 Consensus Mechanism

zentry is present on the following networks: Ethereum, Solana.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

zentry is present on the following networks: Ethereum, Solana.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Alchemy

4

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Alchemy	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	196.17011	kWh/a

Qualitative information

S.4 Consensus Mechanism

Alchemy is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Alchemy is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

galatasaray_s.k.

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	galatasaray_s.k.	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	189.82256	kWh/a

Qualitative information

S.4 Consensus Mechanism

The Chiliz Chain operates on a Proof of Staked Authority (PoSA) consensus model, a hybrid that combines Proof of Stake (PoS) and Proof of Authority (PoA) to secure the network through both economic and reputational incentives.

Core Components:

- Proof of Staked Authority (PoSA) Validator Selection: Validators are selected based on their stake of CHZ tokens and their reputation within the network, enhancing security and trustworthiness.
- Collateral Requirement: Validators must lock a portion of CHZ as collateral, which can be slashed if they act maliciously or fail to meet network standards, ensuring alignment with network security.

S.5 Incentive Mechanisms and Applicable Fees

Chiliz incentivizes validators and delegators to contribute to network security through rewards and transaction fees in CHZ.

Incentive Mechanisms:

- Staking Rewards Validator Rewards: Validators earn CHZ tokens for validating transactions and maintaining network integrity.
- Delegator Rewards: CHZ holders who delegate their tokens to validators share in staking rewards, allowing passive participation in network security.

Applicable Fees:

Transaction Fees CHZ-Based Fees: Transaction fees are paid in CHZ and are distributed to validators as additional compensation, supporting validator incentives and covering network operational costs.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) chiliz is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Ankr

0

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Ankr	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	182.17998	kWh/a

Qualitative information

S.4 Consensus Mechanism

Ankr is present on the following networks: Arbitrum, Avalanche, Binance Beacon Chain, Binance Smart Chain, Ethereum, Fantom, Optimism, Polygon, Solana.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.

- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.

3. Avalanche Protocol:

- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
- Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Beacon Chain operated on a Delegated Proof of Stake (DPoS) consensus mechanism before its operations were discontinued in fall 2024 and its migration to Binance Smart Chain; validators were elected by token holders through staking and voting, limiting active participation to a manageable number of nodes while maintaining decentralization; validators were selected based on the staking weight of their delegators, ensuring stakeholder interests were proportionally represented in the validation process; regular validator rotation was implemented to promote fairness and decentralization by allowing multiple participants to contribute to the network; the system was designed to tolerate some degree of validator failures while maintaining the network's operational integrity, ensuring resilience.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being

selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT) consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

- 1. Lachesis Protocol (aBFT):
 - Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without relying on a central leader, enhancing decentralization and speed.
 - DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG) structure, allowing multiple transactions to be processed in parallel across nodes. This structure supports high throughput, making the network suitable for applications requiring rapid transaction processing.
- 2. Event Blocks and Instant Finality:
 - Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by multiple validators. When enough validators confirm an event block, it becomes part of the Fantom network's history.
 - Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed and cannot be reversed. This property is ideal for applications requiring fast and irreversible transactions.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

- 1. Optimistic Rollups:
 - Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
 - State Commitments: The state of these transactions is periodically committed to the Ethereum main chain.
- 2. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering transactions and creating batches.
 - State Updates: Sequencers update the state of the rollup and submit these updates to the Ethereum main chain.
 - Block Production: They construct and execute Layer 2 blocks, which are then posted to Ethereum.
- 3. Fraud Proofs:
 - Assumption of Validity: Transactions are assumed to be valid by default.
 - Challenge Period: A specific time window during which anyone can challenge a transaction by submitting a fraud proof.
 - Dispute Resolution: If a transaction is challenged, an interactive verification game is played to determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest participant is penalized.

Consensus Process:

- 1. Transaction Submission: Users submit transactions to the sequencer, which orders them into batches.
- 2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2 state.
- 3. State Commitment: The updated state and the batch of transactions are periodically committed to the Ethereum main chain. This is done by posting the state root (a cryptographic hash representing the state) and transaction data as calldata on Ethereum.
- 4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which anyone can submit a fraud proof if they believe a transaction is invalid.
 - Interactive Verification: The dispute is resolved through an interactive verification game, which involves breaking down the transaction into smaller steps to identify the exact point of fraud.
 - Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses their staked collateral as a penalty.
- 5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final. This means the transactions are accepted as valid, and the state updates are permanent.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.

- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Ankr is present on the following networks: Arbitrum, Avalanche, Binance Beacon Chain, Binance Smart Chain, Ethereum, Fantom, Optimism, Polygon, Solana.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.

- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:
 - New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

The Binance Beacon Chain incentivized validators and ensured fee transparency before its migration to Binance Smart Chain; validators were rewarded solely through transaction fees, with no block rewards provided, aligning incentives with network usage and transaction volume; transaction fees were calculated and displayed upfront, ensuring clarity for users and promoting trust in the fee structure; a portion of transaction fees collected in BNB was burned, reducing the overall token supply and contributing to a deflationary economic model.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Fantom's incentive model promotes network security through staking rewards, transaction fees, and delegation options, encouraging broad participation.

Incentive Mechanisms:

- 1. Staking Rewards for Validators:
 - Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively secure the network.
 - Dynamic Staking Rate: Fantom's staking reward rate is dynamic, adjusting based on total FTM staked across the network. As more FTM is staked, individual rewards may decrease, maintaining a balanced reward structure that supports long-term network security.
- 2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to validators. In return, they share in the staking rewards, encouraging wider participation in securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network's high throughput and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps) requiring frequent transactions.
- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users, fostering a favorable environment for high-volume applications.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction throughput and reduce costs while maintaining security and decentralization.

- 1. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering and batching transactions offchain. They play a critical role in maintaining the efficiency and speed of the network.
 - Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize sequencers to process transactions quickly and accurately.
- 2. Validators and Fraud Proofs:
 - Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default. This allows for quick transaction finality.
 - Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by submitting a fraud proof during a specified challenge period. This mechanism ensures that invalid transactions are detected and reverted.
 - Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent transactions. This incentivizes participants to actively monitor the network for invalid transactions, thereby enhancing security.

- 3. Economic Penalties:
 - Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully challenged, they face economic penalties, such as losing a portion of their staked collateral. This discourages dishonest behavior.
 - Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

- 1. Transaction Fees:
 - Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are generally lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the overall cost per transaction, making it more economical for users.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum.
 - Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions.
- 3. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or

going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, avalanche, binance_beacon_chain, binance_smart_chain, ethereum, fantom, optimism, polygon, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Neiro

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Neiro	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	181.28998	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Orderly Network

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Orderly Network	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	179.83676	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the

Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Safe

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Safe	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	174.38716	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

open_loot

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	open_loot	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	170.02748	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid

ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Rocket Pool

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Rocket Pool	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	163.48796	kWh/a

Qualitative information

S.4 Consensus Mechanism

Rocket Pool is present on the following networks: Ethereum, Polygon.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Rocket Pool is present on the following networks: Ethereum, Polygon.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Orbs

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Orbs	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	160.51438	kWh/a

Qualitative information

S.4 Consensus Mechanism

Orbs is present on the following networks: Binance Smart Chain, Ethereum, Polygon.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Orbs is present on the following networks: Binance Smart Chain, Ethereum, Polygon.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Spell Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Spell Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	160.06213	kWh/a

Qualitative information

S.4 Consensus Mechanism

Spell Token is present on the following networks: Arbitrum, Avalanche, Ethereum, Fantom.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:

- Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.

- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT) consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

- 1. Lachesis Protocol (aBFT):
 - Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without relying on a central leader, enhancing decentralization and speed.
 - DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG) structure, allowing multiple transactions to be processed in parallel across nodes. This structure supports high throughput, making the network suitable for applications requiring rapid transaction processing.
- 2. Event Blocks and Instant Finality:
 - Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by multiple validators. When enough validators confirm an event block, it becomes part of the Fantom network's history.
 - Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed and cannot be reversed. This property is ideal for applications requiring fast and irreversible transactions.

S.5 Incentive Mechanisms and Applicable Fees

Spell Token is present on the following networks: Arbitrum, Avalanche, Ethereum, Fantom.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.

- Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

- 1. Validators:
- Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.
- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.

2. Economic Incentives:

- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:
 - New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Fantom's incentive model promotes network security through staking rewards, transaction fees, and delegation options, encouraging broad participation.

Incentive Mechanisms:

- 1. Staking Rewards for Validators:
 - Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively secure the network.
 - Dynamic Staking Rate: Fantom's staking reward rate is dynamic, adjusting based on total FTM staked across the network. As more FTM is staked, individual rewards may decrease, maintaining a balanced reward structure that supports long-term network security.
- 2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to validators. In return, they share in the staking rewards, encouraging wider participation in securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network's high throughput and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps) requiring frequent transactions.
- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users, fostering a favorable environment for high-volume applications.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, avalanche, ethereum, fantom is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

tokenfi

7

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	tokenfi	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	158.48872	kWh/a

Qualitative information

S.4 Consensus Mechanism

tokenfi is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

tokenfi is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Perpetual

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Perpetual	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	157.19065	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Across Protocol Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Across Protocol Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	155.25301	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the

Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Renzo

9]]

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Renzo	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	153.79979	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Ox Protocol Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	0x Protocol Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	148.10624	kWh/a

Qualitative information

S.4 Consensus Mechanism

Ox Protocol Token is present on the following networks: Avalanche, Ethereum, Gnosis Chain, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
 - Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.

- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Ox Protocol Token is present on the following networks: Avalanche, Ethereum, Gnosis Chain, Solana.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

- 1. Validators:
- Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.
- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:
 - New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-term network security incentives with token holders' economic interests.
- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) avalanche, ethereum, gnosis_chain, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Wootrade Network

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Wootrade Network	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	147.95897	kWh/a

Qualitative information

S.4 Consensus Mechanism

Wootrade Network is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain, Ethereum, Near Protocol, Polygon.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.

- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives

- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a novel approach called Doomslug, which enables high efficiency, fast transaction processing, and secure finality in its operations.

Core Concepts:

- 1. Doomslug and Proof of Stake:
 - NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR tokens to participate in securing the network. However, NEAR's implementation is enhanced with the Doomslug protocol.
 - Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds of validators approve the block, ensuring rapid transaction confirmation.
- 2. Sharding with Nightshade:
 - NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into multiple shards, enabling parallel processing of transactions across the network, thus significantly increasing throughput. Each shard processes a portion of transactions, and the outcomes are merged into a single "snapshot" block.
 - This sharding approach ensures scalability, allowing the network to grow and handle increasing demand efficiently.

Consensus Process:

- 1. Validator Selection:
 - Validators are selected to propose and validate blocks based on the amount of NEAR tokens staked. This selection process is designed to ensure that only validators with significant stakes and community trust participate in securing the network.

- 2. Transaction Finality:
 - NEAR achieves transaction finality through its PoS-based system, where validators vote on blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug, meaning that no forks can alter the confirmed state.
- 3. Epochs and Rotation:
 - Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in which validators are reshuffled, and new block proposers are selected, ensuring a balance between performance and decentralization.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Wootrade Network is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain, Ethereum, Near Protocol, Polygon.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.

- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

- 1. Validators:
- Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.
- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:
 - Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5% annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators propose blocks, validate transactions, and receive a share of these rewards based on their staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and improve the chances of being selected to validate transactions. Delegators share in the validator's rewards based on their delegated tokens, incentivizing users to support reliable validators.

- 3. Slashing and Economic Penalties:
 - Validators face penalties for malicious behavior, such as failing to validate correctly or acting dishonestly. The slashing mechanism enforces security by deducting a portion of their staked tokens, ensuring validators follow the network's best interests.
- 4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total circulating supply, introducing a potential deflationary effect over time. Validators also receive a portion of transaction fees as additional rewards, providing an ongoing incentive for network maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

- A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest is distributed to validators as compensation for their work. The burning mechanism helps maintain long-term economic sustainability and potential value appreciation for NEAR holders.
- 4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging efficient use of resources and preventing spam attacks.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, avalanche, binance_smart_chain, ethereum, near_protocol, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Blur

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Blur	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	147.50247	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,

but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Stader

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Stader	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	146.17035	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Goatseus Maximus

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Goatseus Maximus	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	144.66501	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Numeraire

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Numeraire	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	142.17397	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

ssv network

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	ssv network	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	140.84185	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the

Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Optimism

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Optimism	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	140.40695	kWh/a

Qualitative information

S.4 Consensus Mechanism

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

- 1. Optimistic Rollups:
 - Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
 - State Commitments: The state of these transactions is periodically committed to the Ethereum main chain.
- 2. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering transactions and creating batches.
 - State Updates: Sequencers update the state of the rollup and submit these updates to the Ethereum main chain.
 - Block Production: They construct and execute Layer 2 blocks, which are then posted to Ethereum.
- 3. Fraud Proofs:
 - Assumption of Validity: Transactions are assumed to be valid by default.
 - Challenge Period: A specific time window during which anyone can challenge a transaction by submitting a fraud proof.
 - Dispute Resolution: If a transaction is challenged, an interactive verification game is played to determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest participant is penalized.

Consensus Process:

- 1. Transaction Submission: Users submit transactions to the sequencer, which orders them into batches.
- 2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2 state.
- 3. State Commitment: The updated state and the batch of transactions are periodically committed to the Ethereum main chain. This is done by posting the state root (a cryptographic hash representing the state) and transaction data as calldata on Ethereum.
- 4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which anyone can submit a fraud proof if they believe a transaction is invalid.
 - Interactive Verification: The dispute is resolved through an interactive verification game, which involves breaking down the transaction into smaller steps to identify the exact point of fraud.
 - Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses their staked collateral as a penalty.
- 5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final. This means the transactions are accepted as valid, and the state updates are permanent.

S.5 Incentive Mechanisms and Applicable Fees

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

- 1. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering and batching transactions offchain. They play a critical role in maintaining the efficiency and speed of the network.
 - Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize sequencers to process transactions quickly and accurately.
- 2. Validators and Fraud Proofs:
 - Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default. This allows for quick transaction finality.
 - Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by submitting a fraud proof during a specified challenge period. This mechanism ensures that invalid transactions are detected and reverted.
 - Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent transactions. This incentivizes participants to actively monitor the network for invalid transactions, thereby enhancing security.
- 3. Economic Penalties:
 - Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully challenged, they face economic penalties, such as losing a portion of their staked collateral. This discourages dishonest behavior.
 - Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

- 1. Transaction Fees:
 - Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are generally lower than Ethereum mainnet fees due to the reduced computational load on the main chain.

- Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the overall cost per transaction, making it more economical for users.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum.
 - Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions.
- 3. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) optimism is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Jito

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Jito	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	140.35802	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:
 - Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

babydoge

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	babydoge	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	139.90905	kWh/a

Qualitative information

S.4 Consensus Mechanism

babydoge is present on the following networks: Binance Smart Chain, Ethereum, Solana.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of

being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.

- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.

- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

babydoge is present on the following networks: Binance Smart Chain, Ethereum, Solana.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

- 4. Smart Contract Fees:
 - Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

API3

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	API3	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	138.29870	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid

ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Sidus

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Sidus	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	137.81430	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon

Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

SUNDOG

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	SUNDOG	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	136.77806	kWh/a

Qualitative information

S.4 Consensus Mechanism

The Tron blockchain operates on a Delegated Proof of Stake (DPoS) consensus mechanism, designed to improve scalability, transaction speed, and energy efficiency.

Core Components:

- 1. Delegated Proof of Stake (DPoS): Tron uses DPoS, where token holders vote for a group of delegates known as Super Representatives (SRs)who are responsible for validating transactions and producing new blocks on the network. Token holders can vote for SRs based on their stake in the Tron network, and the top 27 SRs (or more, depending on the protocol version) are selected to participate in the block production process. SRs take turns producing blocks, which are added to the blockchain. This is done on a rotational basis to ensure decentralization and prevent control by a small group of validators.
- 2. Block Production: The Super Representatives generate new blocks and confirm transactions. The Tron blockchain achieves block finality quickly, with block production occurring every 3 seconds, making it highly efficient and capable of processing thousands of transactions per second.
- 3. Voting and Governance: Tron's DPoS system also allows token holders to vote on important network decisions, such as protocol upgrades and changes to the system's parameters. Voting power is proportional to the amount of TRX (Tron's native token) that a user holds and chooses to stake. This provides a governance system where the community can actively participate in decision-making.
- 4. Super Representatives: The Super Representatives play a crucial role in maintaining the security and stability of the Tron blockchain. They are responsible for validating transactions, proposing new blocks, and ensuring the overall functionality of the network. Super Representatives are incentivized with block rewards (newly minted TRX tokens) and transaction feesfor their work.

S.5 Incentive Mechanisms and Applicable Fees

The Tron blockchain uses a Delegated Proof of Stake (DPoS) consensus mechanism to secure its network and incentivize participation.

Incentive Mechanism:

- 1. Super Representatives (SRs) Rewards:
 - Block Rewards: Super Representatives (SRs), who are elected by TRX holders, are rewarded for producing blocks. Each block they produce comes with a block reward in the form of TRX tokens.
 - Transaction Fees: In addition to block rewards, SRs receive transaction fees for validating transactions and including them in blocks. This ensures they are incentivized to process transactions efficiently.
- 2. Voting and Delegation:
 - TRX Staking: TRX holders can stake their tokens and vote for Super Representatives (SRs). When TRX holders vote, they delegate their voting power to SRs, which allows SRs to earn rewards in the form of newly minted TRX tokens.
 - Delegator Rewards: Token holders who delegate their votes to an SR can also receive a share of the rewards. This means delegators share in the block rewards and transaction fees that the SR earns.
 - Incentivizing Participation: The more tokens a user stakes, the more voting power they have, which encourages participation in governance and network security.

3. Incentive for SRs:

SRs are also incentivized to maintain the health and performance of the network. Their reputation and continued election depend on their ability to produce blocks consistently and efficiently process transactions.

Applicable Fees:

- 1. Transaction Fees:
 - Fee Calculation: Users must pay transaction fees to have their transactions processed. The transaction fee varies based on the complexity of the transaction and the network's current demand. This is paid in TRX tokens. Transaction
 - Fee Distribution: Transaction fees are distributed to Super Representatives (SRs), giving them an ongoing income to maintain and support the network.
- 2. Storage Fees:
 - Tron charges storage fees for data storage on the blockchain. This includes storing smart contracts, tokens, and other data on the network. Users are required to pay these fees in TRX tokens to store data.
- 3. Energy and Bandwidth:

Energy: Tron uses a resource model that allows users to access network resources like bandwidth and energy through staking. Users who stake their TRX tokens receive \energy

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) tron is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Portal

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Portal	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	128.12612	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Hashflow

₽

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Hashflow	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	126.91510	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the

Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

seedify

Ø

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	seedify	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	125.45515	kWh/a

Qualitative information

S.4 Consensus Mechanism

seedify is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,

🕞 Finst

but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

seedify is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

1. Validators and Sequencers:

- Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
- Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

HoloToken

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	HoloToken	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	124.36382	kWh/a

Qualitative information

S.4 Consensus Mechanism

HoloToken is present on the following networks: Ethereum, Gnosis Chain.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the

heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain – Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed, low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens and participate in consensus by validating blocks. This setup ensures that validators have an economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset management.

S.5 Incentive Mechanisms and Applicable Fees

HoloToken is present on the following networks: Ethereum, Gnosis Chain.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

The Gnosis Chain's incentive and fee models encourage both validator participation and network accessibility, using a dual-token system to maintain low transaction costs and effective staking rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for their participation in consensus and securing the network.
- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO tokens to validators, allowing them to share in staking rewards and encouraging broader participation in network security.
- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-term network security incentives with token holders' economic interests.

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs affordable and predictable. This model is especially suited for high-frequency applications and dApps where low transaction fees are essential. xDai transaction fees are redistributed to validators as part of their compensation, aligning their rewards with network activity. Delegated Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by delegating their tokens to active validators, promoting user participation in network security without requiring direct involvement in consensus operations.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, gnosis_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Cartesi Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Cartesi Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	118.80125	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator

is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

SKALE

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	SKALE	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/

Field	Value	Unit
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	118.80125	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Biconomy Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Biconomy Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	117.22692	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of

the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Pyth Network

()

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Pyth Network	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	113.62116	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

mon

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	mon	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	113.35165	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the

Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

OMGToken

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	OMGToken	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	113.10945	kWh/a

Qualitative information

S.4 Consensus Mechanism

OMGToken is present on the following networks: Ethereum, Polygon.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.

- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

OMGToken is present on the following networks: Ethereum, Polygon.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees

associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Vanar

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Vanar	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	112.86294	kWh/a

Qualitative information

S.4 Consensus Mechanism

Vanar is present on the following networks: Ethereum, Polygon.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Vanar is present on the following networks: Ethereum, Polygon.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

GMX

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	GMX	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	112.65986	kWh/a

Qualitative information

S.4 Consensus Mechanism

GMX is present on the following networks: Arbitrum, Avalanche.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:

- Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.

- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

S.5 Incentive Mechanisms and Applicable Fees

GMX is present on the following networks: Arbitrum, Avalanche.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.

- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, avalanche is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

foxy

3

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	foxy	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	111.69000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Linea employs Zero-Knowledge Rollups (zk-Rollups) to ensure scalable, secure, and efficient transaction processing while maintaining full compatibility with the Ethereum ecosystem.

Core Components:

- Zero-Knowledge Rollups (zk-Rollups): Transactions are aggregated off-chain into batches, and a single zero-knowledge proof is submitted to the Ethereum mainnet, reducing on-chain congestion and improving scalability.
- Type 2 zkEVM: Linea is fully compatible with the Ethereum Virtual Machine (EVM), enabling seamless integration with Ethereum-based smart contracts and dApps.
- Proof Aggregation: The network employs proof aggregation to finalize multiple batches of transactions into a single zero-knowledge proof, ensuring secure and efficient finalization of Layer 2 activity on the Ethereum mainnet.

S.5 Incentive Mechanisms and Applicable Fees

Linea's incentive model aligns validator performance and network security with user needs for low-cost, efficient transaction processing.

Incentive Mechanisms:

Validator Rewards: Validators earn rewards from transaction fees for their role in processing transactions and submitting aggregated proofs to the Ethereum mainnet.

Applicable Fees:

- Transaction Fees: Users pay transaction fees in the network's native token. These fees cover the costs of executing transactions on the Layer 2 network and submitting proofs to the Ethereum mainnet.
- Cost Efficiency: zk-Rollups significantly reduce transaction fees compared to Ethereum mainnet transactions by batching multiple transactions into a single proof, making Linea an economical solution for scalable dApps.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) linea is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

MAGIC

۶ME

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	MAGIC	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	111.51833	kWh/a

Qualitative information

S.4 Consensus Mechanism

MAGIC is present on the following networks: Arbitrum, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

MAGIC is present on the following networks: Arbitrum, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.

- Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
- Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using

empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Grass

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Grass	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	110.18393	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their

staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

ladys

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	ladys	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/

Field	Value	Unit
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	109.98229	kWh/a

Qualitative information

S.4 Consensus Mechanism

ladys is present on the following networks: Arbitrum, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

ladys is present on the following networks: Arbitrum, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

cat in a dogs world

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	cat in a dogs world	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	108.31059	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
- Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more

tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

- 4. Smart Contract Fees:
 - Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

shrapnel

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	shrapnel	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	106.23201	kWh/a

Qualitative information

S.4 Consensus Mechanism

shrapnel is present on the following networks: Avalanche, Binance Smart Chain, Ethereum.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
 - Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).

🕞 Finst

This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

shrapnel is present on the following networks: Avalanche, Binance Smart Chain, Ethereum.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

- 1. Validators:
- Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.
- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.
- 2. Economic Incentives:
- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.
- 3. Penalties:
- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.
- 3. Asset Creation Fees:
 - New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid

ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) avalanche, binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

spectral

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	spectral	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	102.82086	kWh/a

Qualitative information

S.4 Consensus Mechanism

spectral is present on the following networks: Base, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus

mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

spectral is present on the following networks: Base, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) base, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally

Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Yield Guild Games Token

Y

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Yield Guild Games Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	101.15581	kWh/a

Qualitative information

S.4 Consensus Mechanism

Yield Guild Games Token is present on the following networks: Ethereum, Harmony One, Ronin, Solana.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Harmony operates on a consensus mechanism called Effective Proof of Stake (EPoS), designed to balance validator influence and enhance network security while improving transaction scalability.

Core Components:

1. Effective Proof of Stake (EPoS):

- Validator Diversity: EPoS allows a large number of validators to participate and limits the influence of high-stake validators, promoting decentralization and preventing stake centralization.

- Staking Across Shards: Multiple validators compete within each shard, distributing staking power more broadly and enhancing network security.
- 2. Sharding with PBFT Finality:
 - Parallel Transaction Processing: Harmony's four shards enable independent processing of transactions and smart contracts, enhancing scalability and throughput.
 - Fast Finality with PBFT: Each shard uses a modified Practical Byzantine Fault Tolerance (PBFT) model, ensuring immediate finality once blocks are validated and achieving high transaction speeds.

Ronin utilizes a Delegated Proof of Stake (DPoS) consensus mechanism, where community-elected validators are responsible for securing the network and validating transactions.

Core Components of Ronin's Consensus:

- 1. Delegated Proof of Stake (DPoS):
 - Community Voting for Validator Selection: RON token holders delegate their tokens to vote for validators, who are then selected to produce blocks, validate transactions, and maintain network security. Validators with the most votes are chosen to participate in consensus.
 - Periodic Validator Rotation: Validators are regularly rotated based on community votes, enhancing decentralization and preventing long-term control by any single validator group. This rotation supports both security and fairness.
- 2. Incentive-Driven Voting System:
 - Alignment with Community Interests: The voting system ensures that validators remain aligned with community goals. Validators that fail to perform adequately or act against network interests may lose votes and be replaced by more trusted participants.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Yield Guild Games Token is present on the following networks: Ethereum, Harmony One, Ronin, Solana.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Harmony incentivizes validators and delegators to participate in network security and performance through staking rewards, transaction fees, and a unique reward structure promoting decentralization.

Incentive Mechanisms:

1. Staking Rewards for Validators and Delegators:

ONE Token Rewards: Validators earn ONE tokens for validating transactions and securing the network, with a share of these rewards distributed to delegators based on the amount staked.

- 2. Decentralization Penalty for High Stake:
- Reward Adjustment for Large Stakeholders: Validators with an excessive delegated stake experience reduced rewards, preventing centralization and encouraging a fair distribution of staking power.

Applicable Fees:

1. Transaction Fees:

Harmony charges minimal transaction fees in ONE tokens, benefiting high-frequency applications and providing validators with additional rewards.

Ronin's incentive model combines rewards, slashing mechanisms, and governance features to support network security and encourage active community participation.

Incentive Mechanisms:

- 1. Rewards for Validators and Delegators:
 - Staking Rewards for Validators: Validators earn RON tokens as rewards for successfully producing blocks and validating transactions. These rewards incentivize validators to fulfill their duties diligently, maintaining network stability.
 - Delegator Rewards: Delegators who stake their tokens with selected validators also earn a portion of the staking rewards. This sharing of rewards promotes broad participation from token holders in network security and governance.
- 2. Slashing Mechanism for Accountability:
 - Penalty for Malicious Behavior: A slashing mechanism penalizes validators who act dishonestly or fail to meet performance standards by cutting a portion of their staked RON tokens. This deters misbehavior and encourages responsible participation.
 - Delegator Risk: Delegators who stake with misbehaving validators are also subject to slashing, which encourages them to choose trustworthy validators and monitor performance carefully.
- 3. Governance Participation:
 - RON Token for Governance: Beyond staking and transaction fees, the RON token enables token holders to participate in governance. This includes voting on network upgrades, validator selection, and other protocol decisions, giving token holders a voice in network direction and policy.

Applicable Fees:

Transaction Fees: Fees are paid in RON tokens, contributing to validator rewards and helping to maintain network operations. These fees are designed to be affordable, ensuring accessibility for users while supporting validators' roles.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, harmony_one, ronin, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used

and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

StorjToken

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	StorjToken	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	101.12033	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Covalent X Token

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Covalent X Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	100.03041	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid

ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

puffer

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	puffer	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	99.78821	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon

Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

APENFT

0

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	APENFT	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	98.62132	kWh/a

Qualitative information

S.4 Consensus Mechanism

APENFT is present on the following networks: Binance Smart Chain, Ethereum, Huobi, Tron.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and scalability.

Key Features of HECO's Consensus Mechanism:

- 1. Validator Selection: HECO supports up to 21 validators, selected based on their stake in the network.
- 2. Transaction Processing: Validators are responsible for processing transactions and adding blocks to the blockchain.
- 3. Transaction Finality: The consensus mechanism ensures quick finality, allowing for rapid confirmation of transactions.
- 4. Energy Efficiency: By utilizing PoS elements, HECO reduces energy consumption compared to traditional Proof-of-Work systems.

The Tron blockchain operates on a Delegated Proof of Stake (DPoS) consensus mechanism, designed to improve scalability, transaction speed, and energy efficiency.

Core Components:

- 1. Delegated Proof of Stake (DPoS): Tron uses DPoS, where token holders vote for a group of delegates known as Super Representatives (SRs)who are responsible for validating transactions and producing new blocks on the network. Token holders can vote for SRs based on their stake in the Tron network, and the top 27 SRs (or more, depending on the protocol version) are selected to participate in the block production process. SRs take turns producing blocks, which are added to the blockchain. This is done on a rotational basis to ensure decentralization and prevent control by a small group of validators.
- 2. Block Production: The Super Representatives generate new blocks and confirm transactions. The Tron blockchain achieves block finality quickly, with block production occurring every 3 seconds, making it highly efficient and capable of processing thousands of transactions per second.
- 3. Voting and Governance: Tron's DPoS system also allows token holders to vote on important network decisions, such as protocol upgrades and changes to the system's parameters. Voting power is proportional to the amount of TRX (Tron's native token) that a user holds and chooses to stake. This provides a governance system where the community can actively participate in decision-making.
- 4. Super Representatives: The Super Representatives play a crucial role in maintaining the security and stability of the Tron blockchain. They are responsible for validating transactions, proposing new blocks, and ensuring the overall functionality of the network. Super Representatives are incentivized with block rewards (newly minted TRX tokens) and transaction feesfor their work.

S.5 Incentive Mechanisms and Applicable Fees

APENFT is present on the following networks: Binance Smart Chain, Ethereum, Huobi, Tron.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and scalability.

Incentive Mechanism:

1. Validator Rewards:

Validators are selected based on their stake in the network. They process transactions and add blocks to the blockchain. Validators receive rewards in the form of transaction fees for their role in maintaining the blockchain's integrity.

2. Staking Participation:

Users can stake Huobi Token (HT) to become validators or delegate their tokens to existing validators. Staking helps secure the network and, in return, participants receive a portion of the transaction fees as rewards.

Applicable Fees:

1. Transaction Fees (Gas Fees):

Users pay gas fees in HT tokens to execute transactions and interact with smart contracts on the HECO network. These fees compensate validators for processing and validating transactions.

2. Smart Contract Execution Fees:

Deploying and interacting with smart contracts incur additional fees, which are also paid in HT tokens. These fees cover the computational resources required to execute contract code.

The Tron blockchain uses a Delegated Proof of Stake (DPoS) consensus mechanism to secure its network and incentivize participation.

Incentive Mechanism:

- 1. Super Representatives (SRs) Rewards:
 - Block Rewards: Super Representatives (SRs), who are elected by TRX holders, are rewarded for producing blocks. Each block they produce comes with a block reward in the form of TRX tokens.
 - Transaction Fees: In addition to block rewards, SRs receive transaction fees for validating transactions and including them in blocks. This ensures they are incentivized to process transactions efficiently.
- 2. Voting and Delegation:
 - TRX Staking: TRX holders can stake their tokens and vote for Super Representatives (SRs). When TRX holders vote, they delegate their voting power to SRs, which allows SRs to earn rewards in the form of newly minted TRX tokens.
 - Delegator Rewards: Token holders who delegate their votes to an SR can also receive a share of the rewards. This means delegators share in the block rewards and transaction fees that the SR earns.
 - Incentivizing Participation: The more tokens a user stakes, the more voting power they have, which encourages participation in governance and network security.

3. Incentive for SRs:

SRs are also incentivized to maintain the health and performance of the network. Their reputation and continued election depend on their ability to produce blocks consistently and efficiently process transactions.

Applicable Fees:

- 1. Transaction Fees:
 - Fee Calculation: Users must pay transaction fees to have their transactions processed. The transaction fee varies based on the complexity of the transaction and the network's current demand. This is paid in TRX tokens. Transaction
 - Fee Distribution: Transaction fees are distributed to Super Representatives (SRs), giving them an ongoing income to maintain and support the network.
- 2. Storage Fees:
 - Tron charges storage fees for data storage on the blockchain. This includes storing smart contracts, tokens, and other data on the network. Users are required to pay these fees in TRX tokens to store data.
- 3. Energy and Bandwidth:

Energy: Tron uses a resource model that allows users to access network resources like bandwidth and energy through staking. Users who stake their TRX tokens receive \energy

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum, huobi, tron is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Request Token

R

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Request Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	94.82302	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Peanut the Squirrel

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Peanut the Squirrel	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	93.21518	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

synfutures

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	synfutures	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	86.77202	kWh/a

Qualitative information

S.4 Consensus Mechanism

synfutures is present on the following networks: Base, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

synfutures is present on the following networks: Base, Ethereum.

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) base, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Golem Network Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Golem Network Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	85.37705	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Orchid

Ö

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Orchid	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	84.65043	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator

is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Radicle

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Radicle	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/

Field	Value	Unit
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	83.80272	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Vulcan Forged PYR Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Vulcan Forged PYR Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	82.71250	kWh/a

Qualitative information

S.4 Consensus Mechanism

Vulcan Forged PYR Token is present on the following networks: Ethereum, Polygon.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Vulcan Forged PYR Token is present on the following networks: Ethereum, Polygon.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Drift

Ø

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Drift	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	82.50204	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

SUN

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	SUN	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	82.42968	kWh/a

Qualitative information

S.4 Consensus Mechanism

The Tron blockchain operates on a Delegated Proof of Stake (DPoS) consensus mechanism, designed to improve scalability, transaction speed, and energy efficiency.

Core Components:

- 1. Delegated Proof of Stake (DPoS): Tron uses DPoS, where token holders vote for a group of delegates known as Super Representatives (SRs)who are responsible for validating transactions and producing new blocks on the network. Token holders can vote for SRs based on their stake in the Tron network, and the top 27 SRs (or more, depending on the protocol version) are selected to participate in the block production process. SRs take turns producing blocks, which are added to the blockchain. This is done on a rotational basis to ensure decentralization and prevent control by a small group of validators.
- 2. Block Production: The Super Representatives generate new blocks and confirm transactions. The Tron blockchain achieves block finality quickly, with block production occurring every 3 seconds, making it highly efficient and capable of processing thousands of transactions per second.
- 3. Voting and Governance: Tron's DPoS system also allows token holders to vote on important network decisions, such as protocol upgrades and changes to the system's parameters. Voting power is proportional to the amount of TRX (Tron's native token) that a user holds and chooses to stake. This provides a governance system where the community can actively participate in decision-making.
- 4. Super Representatives: The Super Representatives play a crucial role in maintaining the security and stability of the Tron blockchain. They are responsible for validating transactions, proposing new blocks, and ensuring the overall functionality of the network. Super Representatives are incentivized with block rewards (newly minted TRX tokens) and transaction feesfor their work.

S.5 Incentive Mechanisms and Applicable Fees

The Tron blockchain uses a Delegated Proof of Stake (DPoS) consensus mechanism to secure its network and incentivize participation.

Incentive Mechanism:

- 1. Super Representatives (SRs) Rewards:
 - Block Rewards: Super Representatives (SRs), who are elected by TRX holders, are rewarded for producing blocks. Each block they produce comes with a block reward in the form of TRX tokens.

- Transaction Fees: In addition to block rewards, SRs receive transaction fees for validating transactions and including them in blocks. This ensures they are incentivized to process transactions efficiently.
- 2. Voting and Delegation:
 - TRX Staking: TRX holders can stake their tokens and vote for Super Representatives (SRs). When TRX holders vote, they delegate their voting power to SRs, which allows SRs to earn rewards in the form of newly minted TRX tokens.
 - Delegator Rewards: Token holders who delegate their votes to an SR can also receive a share of the rewards. This means delegators share in the block rewards and transaction fees that the SR earns.
 - Incentivizing Participation: The more tokens a user stakes, the more voting power they have, which encourages participation in governance and network security.
- 3. Incentive for SRs:
 - SRs are also incentivized to maintain the health and performance of the network. Their reputation and continued election depend on their ability to produce blocks consistently and efficiently process transactions.

Applicable Fees:

- 1. Transaction Fees:
 - Fee Calculation: Users must pay transaction fees to have their transactions processed. The transaction fee varies based on the complexity of the transaction and the network's current demand. This is paid in TRX tokens. Transaction
 - Fee Distribution: Transaction fees are distributed to Super Representatives (SRs), giving them an ongoing income to maintain and support the network.
- 2. Storage Fees:
 - Tron charges storage fees for data storage on the blockchain. This includes storing smart contracts, tokens, and other data on the network. Users are required to pay these fees in TRX tokens to store data.
- 3. Energy and Bandwidth:
 - Energy: Tron uses a resource model that allows users to access network resources like bandwidth and energy through staking. Users who stake their TRX tokens receive \energy

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) tron is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Civic

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Civic	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	81.55295	kWh/a

Qualitative information

S.4 Consensus Mechanism

Civic is present on the following networks: Ethereum, Tron.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

The Tron blockchain operates on a Delegated Proof of Stake (DPoS) consensus mechanism, designed to improve scalability, transaction speed, and energy efficiency.

Core Components:

- 1. Delegated Proof of Stake (DPoS): Tron uses DPoS, where token holders vote for a group of delegates known as Super Representatives (SRs)who are responsible for validating transactions and producing new blocks on the network. Token holders can vote for SRs based on their stake in the Tron network, and the top 27 SRs (or more, depending on the protocol version) are selected to participate in the block production process. SRs take turns producing blocks, which are added to the blockchain. This is done on a rotational basis to ensure decentralization and prevent control by a small group of validators.
- 2. Block Production: The Super Representatives generate new blocks and confirm transactions. The Tron blockchain achieves block finality quickly, with block production occurring every 3 seconds, making it highly efficient and capable of processing thousands of transactions per second.
- 3. Voting and Governance: Tron's DPoS system also allows token holders to vote on important network decisions, such as protocol upgrades and changes to the system's parameters. Voting power is proportional to the amount of TRX (Tron's native token) that a user holds and chooses to stake. This provides a governance system where the community can actively participate in decision-making.
- 4. Super Representatives: The Super Representatives play a crucial role in maintaining the security and stability of the Tron blockchain. They are responsible for validating transactions, proposing

new blocks, and ensuring the overall functionality of the network. Super Representatives are incentivized with block rewards (newly minted TRX tokens) and transaction feesfor their work.

S.5 Incentive Mechanisms and Applicable Fees

Civic is present on the following networks: Ethereum, Tron.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

The Tron blockchain uses a Delegated Proof of Stake (DPoS) consensus mechanism to secure its network and incentivize participation.

Incentive Mechanism:

- 1. Super Representatives (SRs) Rewards:
 - Block Rewards: Super Representatives (SRs), who are elected by TRX holders, are rewarded for producing blocks. Each block they produce comes with a block reward in the form of TRX tokens.
 - Transaction Fees: In addition to block rewards, SRs receive transaction fees for validating transactions and including them in blocks. This ensures they are incentivized to process transactions efficiently.
- 2. Voting and Delegation:
 - TRX Staking: TRX holders can stake their tokens and vote for Super Representatives (SRs). When TRX holders vote, they delegate their voting power to SRs, which allows SRs to earn rewards in the form of newly minted TRX tokens.
 - Delegator Rewards: Token holders who delegate their votes to an SR can also receive a share of the rewards. This means delegators share in the block rewards and transaction fees that the SR earns.
 - Incentivizing Participation: The more tokens a user stakes, the more voting power they have, which encourages participation in governance and network security.
- 3. Incentive for SRs:
 - SRs are also incentivized to maintain the health and performance of the network. Their reputation and continued election depend on their ability to produce blocks consistently and efficiently process transactions.

Applicable Fees:

- 1. Transaction Fees:
 - Fee Calculation: Users must pay transaction fees to have their transactions processed. The transaction fee varies based on the complexity of the transaction and the network's current demand. This is paid in TRX tokens. Transaction
 - Fee Distribution: Transaction fees are distributed to Super Representatives (SRs), giving them an ongoing income to maintain and support the network.

2. Storage Fees:

Tron charges storage fees for data storage on the blockchain. This includes storing smart contracts, tokens, and other data on the network. Users are required to pay these fees in TRX tokens to store data.

3. Energy and Bandwidth:

Energy: Tron uses a resource model that allows users to access network resources like bandwidth and energy through staking. Users who stake their TRX tokens receive \energy

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, tron is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Aavegotchi GHST Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Aavegotchi GHST Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	79.02382	kWh/a

Qualitative information

S.4 Consensus Mechanism

Aavegotchi GHST Token is present on the following networks: Base, Ethereum, Polygon.

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.

- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Aavegotchi GHST Token is present on the following networks: Base, Ethereum, Polygon.

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) base, ethereum, polygon is calculated first. For the energy consumption of the token, a fraction of the

energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Gods Unchained

0

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Gods Unchained	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	78.95863	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Prom

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Prom	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	76.26516	kWh/a

Qualitative information

S.4 Consensus Mechanism

Prom is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.

🕞 Finst

- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Prom is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

ARPA Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	ARPA Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	75.91487	kWh/a

Qualitative information

S.4 Consensus Mechanism

ARPA Token is present on the following networks: Binance Smart Chain, Ethereum, Polygon.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

ARPA Token is present on the following networks: Binance Smart Chain, Ethereum, Polygon.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:
 - Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.
- 4. Smart Contract Fees:
 - Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC

tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

ConstitutionDAO

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	ConstitutionDAO	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	75.32556	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the

heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

3

Orca

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Orca	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	75.28468	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Enzyme

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Enzyme	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	70.02461	kWh/a

Qualitative information

S.4 Consensus Mechanism

Enzyme is present on the following networks: Ethereum, Polygon.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Enzyme is present on the following networks: Ethereum, Polygon.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

dao_maker

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	dao_maker	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	69.27045	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

iEx ec Network Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	iEx ec Network Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	69.14935	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the

Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

StaFi

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	StaFi	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	66.72731	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

SPACE ID

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	SPACE ID	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	66.72719	kWh/a

Qualitative information

S.4 Consensus Mechanism

SPACE ID is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of

being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.

- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

SPACE ID is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Kyber Network Crystal v2

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Kyber Network Crystal v2	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	66.56869	kWh/a

Qualitative information

S.4 Consensus Mechanism

Kyber Network Crystal v2 is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum, Optimism, Polygon.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.

- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

- 1. Optimistic Rollups:
 - Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
 - State Commitments: The state of these transactions is periodically committed to the Ethereum main chain.
- 2. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering transactions and creating batches.
 - State Updates: Sequencers update the state of the rollup and submit these updates to the Ethereum main chain.
 - Block Production: They construct and execute Layer 2 blocks, which are then posted to Ethereum.
- 3. Fraud Proofs:
 - Assumption of Validity: Transactions are assumed to be valid by default.
 - Challenge Period: A specific time window during which anyone can challenge a transaction by submitting a fraud proof.
 - Dispute Resolution: If a transaction is challenged, an interactive verification game is played to determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest participant is penalized.

Consensus Process:

- 1. Transaction Submission: Users submit transactions to the sequencer, which orders them into batches.
- 2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2 state.
- 3. State Commitment: The updated state and the batch of transactions are periodically committed to the Ethereum main chain. This is done by posting the state root (a cryptographic hash representing the state) and transaction data as calldata on Ethereum.
- 4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which anyone can submit a fraud proof if they believe a transaction is invalid.
 - Interactive Verification: The dispute is resolved through an interactive verification game, which involves breaking down the transaction into smaller steps to identify the exact point of fraud.
 - Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses their staked collateral as a penalty.
- 5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final. This means the transactions are accepted as valid, and the state updates are permanent.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Kyber Network Crystal v2 is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum, Optimism, Polygon.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

- 1. Sequencers:
 - Transaction Ordering: Sequencers are responsible for ordering and batching transactions offchain. They play a critical role in maintaining the efficiency and speed of the network.
 - Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize sequencers to process transactions quickly and accurately.
- 2. Validators and Fraud Proofs:
 - Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default. This allows for quick transaction finality.
 - Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by submitting a fraud proof during a specified challenge period. This mechanism ensures that invalid transactions are detected and reverted.
 - Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent transactions. This incentivizes participants to actively monitor the network for invalid transactions, thereby enhancing security.
- 3. Economic Penalties:
 - Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully challenged, they face economic penalties, such as losing a portion of their staked collateral. This discourages dishonest behavior.
 - Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

- 1. Transaction Fees:
 - Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are generally lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the overall cost per transaction, making it more economical for users.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which covers the gas cost of publishing these state updates on Ethereum.
 - Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple transactions within a batch, reducing the cost burden on individual transactions.
- 3. Smart Contract Fees:
 - Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, binance_smart_chain, ethereum, optimism, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

BandToken

Ø

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	BandToken	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	65.04910	kWh/a

Qualitative information

S.4 Consensus Mechanism

BandToken is present on the following networks: Binance Smart Chain, Ethereum, Fantom.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial

role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process

- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT) consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

- 1. Lachesis Protocol (aBFT):
 - Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without relying on a central leader, enhancing decentralization and speed.
 - DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG) structure, allowing multiple transactions to be processed in parallel across nodes. This structure supports high throughput, making the network suitable for applications requiring rapid transaction processing.
- 2. Event Blocks and Instant Finality:
 - Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by multiple validators. When enough validators confirm an event block, it becomes part of the Fantom network's history.

- Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed and cannot be reversed. This property is ideal for applications requiring fast and irreversible transactions.

S.5 Incentive Mechanisms and Applicable Fees

BandToken is present on the following networks: Binance Smart Chain, Ethereum, Fantom.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:
 - Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Fantom's incentive model promotes network security through staking rewards, transaction fees, and delegation options, encouraging broad participation.

Incentive Mechanisms:

- 1. Staking Rewards for Validators:
 - Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively secure the network.
 - Dynamic Staking Rate: Fantom's staking reward rate is dynamic, adjusting based on total FTM staked across the network. As more FTM is staked, individual rewards may decrease, maintaining a balanced reward structure that supports long-term network security.
- 2. Delegation for Token Holders:
 - Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to validators. In return, they share in the staking rewards, encouraging wider participation in securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network's high throughput and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps) requiring frequent transactions.
- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users, fostering a favorable environment for high-volume applications.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum, fantom is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best

effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

CelerToken

С

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	CelerToken	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	61.37521	kWh/a

Qualitative information

S.4 Consensus Mechanism

CelerToken is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

🕞 Finst

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

CelerToken is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy

consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Gluwa Creditcoin Vesting Token

G

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Gluwa Creditcoin Vesting Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	60.30889	kWh/ a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Dent

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Dent	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	57.40244	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,

but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

PowerLedger

<u>ا</u>

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	PowerLedger	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	56.79693	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Bounce Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Bounce Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	56.12342	kWh/a

Qualitative information

S.4 Consensus Mechanism

Bounce Token is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously.

Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.

- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Bounce Token is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Clover

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Clover	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	55.94921	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the

Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Marlin POND

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Marlin POND	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	52.47219	kWh/a

Qualitative information

S.4 Consensus Mechanism

Marlin POND is present on the following networks: Arbitrum, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Marlin POND is present on the following networks: Arbitrum, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.

- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

flux

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	flux	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	52.44036	kWh/a

Qualitative information

S.4 Consensus Mechanism

flux is present on the following networks: Binance Smart Chain, Ethereum, Solana, Tron.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

The Tron blockchain operates on a Delegated Proof of Stake (DPoS) consensus mechanism, designed to improve scalability, transaction speed, and energy efficiency.

Core Components:

- 1. Delegated Proof of Stake (DPoS): Tron uses DPoS, where token holders vote for a group of delegates known as Super Representatives (SRs)who are responsible for validating transactions and producing new blocks on the network. Token holders can vote for SRs based on their stake in the Tron network, and the top 27 SRs (or more, depending on the protocol version) are selected to participate in the block production process. SRs take turns producing blocks, which are added to the blockchain. This is done on a rotational basis to ensure decentralization and prevent control by a small group of validators.
- 2. Block Production: The Super Representatives generate new blocks and confirm transactions. The Tron blockchain achieves block finality quickly, with block production occurring every 3 seconds, making it highly efficient and capable of processing thousands of transactions per second.
- 3. Voting and Governance: Tron's DPoS system also allows token holders to vote on important network decisions, such as protocol upgrades and changes to the system's parameters. Voting power is proportional to the amount of TRX (Tron's native token) that a user holds and chooses to stake. This provides a governance system where the community can actively participate in decision-making.
- 4. Super Representatives: The Super Representatives play a crucial role in maintaining the security and stability of the Tron blockchain. They are responsible for validating transactions, proposing new blocks, and ensuring the overall functionality of the network. Super Representatives are incentivized with block rewards (newly minted TRX tokens) and transaction feesfor their work.

S.5 Incentive Mechanisms and Applicable Fees

flux is present on the following networks: Binance Smart Chain, Ethereum, Solana, Tron.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

The Tron blockchain uses a Delegated Proof of Stake (DPoS) consensus mechanism to secure its network and incentivize participation.

Incentive Mechanism:

- 1. Super Representatives (SRs) Rewards:
 - Block Rewards: Super Representatives (SRs), who are elected by TRX holders, are rewarded for producing blocks. Each block they produce comes with a block reward in the form of TRX tokens.
 - Transaction Fees: In addition to block rewards, SRs receive transaction fees for validating transactions and including them in blocks. This ensures they are incentivized to process transactions efficiently.
- 2. Voting and Delegation:
 - TRX Staking: TRX holders can stake their tokens and vote for Super Representatives (SRs). When TRX holders vote, they delegate their voting power to SRs, which allows SRs to earn rewards in the form of newly minted TRX tokens.
 - Delegator Rewards: Token holders who delegate their votes to an SR can also receive a share of the rewards. This means delegators share in the block rewards and transaction fees that the SR earns.
 - Incentivizing Participation: The more tokens a user stakes, the more voting power they have, which encourages participation in governance and network security.
- 3. Incentive for SRs:
 - SRs are also incentivized to maintain the health and performance of the network. Their reputation and continued election depend on their ability to produce blocks consistently and efficiently process transactions.

Applicable Fees:

- 1. Transaction Fees:
 - Fee Calculation: Users must pay transaction fees to have their transactions processed. The transaction fee varies based on the complexity of the transaction and the network's current demand. This is paid in TRX tokens. Transaction
 - Fee Distribution: Transaction fees are distributed to Super Representatives (SRs), giving them an ongoing income to maintain and support the network.
- 2. Storage Fees:
 - Tron charges storage fees for data storage on the blockchain. This includes storing smart contracts, tokens, and other data on the network. Users are required to pay these fees in TRX tokens to store data.
- 3. Energy and Bandwidth:
 - Energy: Tron uses a resource model that allows users to access network resources like bandwidth and energy through staking. Users who stake their TRX tokens receive \energy

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum, solana, tron is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely

🕞 Finst

economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

TrueFi

77,

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	TrueFi	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	49.89410	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

TARS AI

11

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	TARS AI	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	49.54304	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

IO.NET

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	IO.NET	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	47.97914	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Chromia

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Chromia	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	44.20230	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Sweat Economy

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Sweat Economy	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	41.78026	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the

Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Dusk Network

lacksquare

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Dusk Network	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	40.15233	kWh/a

Qualitative information

S.4 Consensus Mechanism

Dusk Network is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

🕞 Finst

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Dusk Network is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy

consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Gmt

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Gmt	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	38.67937	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.

This encourages widespread participation in securing the network and ensures decentralization.

- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

rss3

R

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/

Field	Value	Unit
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	rss3	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	38.14719	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a

🕞 Finst

precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Gains Network

Э

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Gains Network	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	36.68140	kWh/a

Qualitative information

S.4 Consensus Mechanism

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.

- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Highstreet Token

h

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Highstreet Token	/

Field	Value	Unit
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	36.39686	kWh/a

Qualitative information

S.4 Consensus Mechanism

Highstreet Token is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Highstreet Token is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Radiant Capital

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Radiant Capital	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	35.62395	kWh/a

Qualitative information

S.4 Consensus Mechanism

Radiant Capital is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through

staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.

- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Radiant Capital is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.

- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

DODO bird

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	DODO bird	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	35.09663	kWh/a

Qualitative information

S.4 Consensus Mechanism

DODO bird is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.

- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

DODO bird is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.

- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
- Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Jupiter

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Jupiter	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	33.78372	kWh/a

Qualitative information

S.4 Consensus Mechanism

Jupiter is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Jupiter is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Cloud

C

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Cloud	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	32.82519	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Chainflip

0

Field Value Unit S.1 Name Finst B.V. S.2 Relevant legal entity identifier 724500UI8UD7HKGVJX65 S.3 Name of the crypto-asset Chainflip S.6 Beginning of the period to which the disclosure relates 2024-06-30 S.7 End of the period to which the disclosure relates 2025-06-30 S.8 Energy consumption 32.21318 kWh/a

Quantitative information

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon

Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

chillguy

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	chillguy	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	31.52772	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

BOOK OF MEME

99

Unit

kWh/a

25.82766

Quantitative informationFieldValueS.1 NameFinst B.V.S.2 Relevant legal entity identifier724500UI8UD7HKGVJX65S.3 Name of the crypto-assetBOOK OF MEMES.6 Beginning of the period to which the disclosure relates2024-06-30S.7 End of the period to which the disclosure relates2025-06-30

S.7 End of the period to which the disclosure relates S.8 Energy consumption

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of

the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Access Protocol

a

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Access Protocol	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	24.20283	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

apex_protocol

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	apex_protocol	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	19.68773	kWh/a

Qualitative information

S.4 Consensus Mechanism

apex_protocol is present on the following networks: Arbitrum, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,

🕞 Finst

but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

apex_protocol is present on the following networks: Arbitrum, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

1. Validators and Sequencers:

- Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
- Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

aixbt by Virtuals

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	aixbt by Virtuals	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	18.65481	kWh/a

Qualitative information

S.4 Consensus Mechanism

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

S.5 Incentive Mechanisms and Applicable Fees

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) base is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Maverick Protocol

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Maverick Protocol	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	18.55810	kWh/a

Qualitative information

S.4 Consensus Mechanism

Maverick Protocol is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,

but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Maverick Protocol is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:
 - Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Heima

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Heima	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	17.31761	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

NYM

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	NYM	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	17.07541	kWh/a

Qualitative information

S.4 Consensus Mechanism

NYM is present on the following networks: Ethereum, Osmosis.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Osmosis operates on a Proof of Stake (PoS) consensus mechanism, leveraging the Cosmos SDK and Tendermint Core to provide secure, decentralized, and scalable transaction processing.

Core Components:

- Proof of Stake (PoS): Validators are chosen based on the amount of OSMO tokens they stake or are delegated by other token holders. Validators are responsible for validating transactions, producing blocks, and maintaining network security.
- Cosmos SDK and Tendermint Core: Osmosis uses Tendermint Core for Byzantine Fault Tolerant (BFT) consensus, ensuring fast finality and resistance to attacks as long as less than one-third of validators are malicious.
- Decentralized Governance: OSMO token holders can participate in governance by voting on protocol upgrades and network parameters, fostering a community-driven approach to network development.

S.5 Incentive Mechanisms and Applicable Fees

NYM is present on the following networks: Ethereum, Osmosis.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Osmosis incentivizes validators, delegators, and liquidity providers through a combination of staking rewards, transaction fees, and liquidity incentives.

Incentive Mechanisms:

- Validator Rewards: Validators earn rewards from transaction fees and block rewards, distributed in OSMO tokens, for their role in securing the network and processing transactions. Delegators who stake their OSMO tokens with validators receive a share of these rewards.
- Liquidity Provider Rewards: Users providing liquidity to Osmosis pools earn swap fees and may receive additional incentives in the form of OSMO tokens to encourage liquidity provision.
- Superfluid Staking: Liquidity providers can participate in superfluid staking, staking a portion of their OSMO tokens within liquidity pools. This mechanism allows users to earn staking rewards while maintaining liquidity in the pools

Applicable Fees:

Transaction Fees: Users pay transaction fees in OSMO tokens for network activities, including swaps, staking, and governance participation. These fees are distributed to validators and delegators, incentivizing their continued participation and support for network security.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum, osmosis is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Degen

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Degen	/

Field	Value	Unit
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	17.05637	kWh/a

Qualitative information

S.4 Consensus Mechanism

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

S.5 Incentive Mechanisms and Applicable Fees

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) base is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Magic Eden

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Magic Eden	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	16.95202	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

ChainGPT

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	ChainGPT	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	16.68539	kWh/a

Qualitative information

S.4 Consensus Mechanism

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the

energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

MYRO

0

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	MYRO	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	16.48368	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.
- 4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Brett

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Brett	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	16.47856	kWh/a

Qualitative information

S.4 Consensus Mechanism

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

S.5 Incentive Mechanisms and Applicable Fees

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) base is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make

assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Venus

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Venus	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	15.79032	kWh/a

Qualitative information

S.4 Consensus Mechanism

Venus is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.

- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Venus is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best

effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Bonfida

 \bigotimes

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Bonfida	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	15.05359	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their

staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Parcl

 $\mathbf{\hat{}}$

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Parcl	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/

Field	Value	Unit
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	14.30928	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

carv

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	carv	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	12.35653	kWh/a

Quantitative information

Qualitative information

S.4 Consensus Mechanism

carv is present on the following networks: Arbitrum, Base, Ethereum, Solana.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

Base is a Layer-2 (L2) solution on Ethereum that was introduced by Coinbase and developed using Optimism's OP Stack. L2 transactions do not have their own consensus mechanism and are only validated by the execution clients. The so-called sequencer regularly bundles stacks of L2 transactions and publishes them on the L1 network, i.e. Ethereum. Ethereum's consensus mechanism (Proof-of-stake) thus indirectly secures all L2 transactions as soon as they are written to L1.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.

- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

carv is present on the following networks: Arbitrum, Base, Ethereum, Solana.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Base is a Layer-2 (L2) solution on Ethereum that uses optimistic rollups provided by the OP Stack on which it was developed. Transaction on base are bundled by a, so called, sequencer and the result is regularly submitted as an Layer-1 (L1) transactions. This way many L2 transactions get combined into a single L1 transaction. This lowers the average transaction cost per transaction, because many L2 transactions together fund the transaction cost for the single L1 transaction. This creates incentives to use base rather than the L1, i.e. Ethereum, itself.

To get crypto-assets in and out of base, a special smart contract on Ethereum is used. Since there is no consensus mechanism on L2 an additional mechanism ensures that only existing funds can be withdrawn from L2. When a user wants to withdraw funds, that user needs to submit a withdrawal request on L1. If this request remains unchallenged for a period of time the funds can be

withdrawn. During this time period any other user can submit a fault proof, which will start a dispute resolution process. This process is designed with economic incentives for correct behaviour.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, base, ethereum, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Nakamoto Games

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Nakamoto Games	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	11.80954	kWh/a

Qualitative information

S.4 Consensus Mechanism

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.
- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

ArbDoge Al

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	ArbDoge Al	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	10.64970	kWh/a

Qualitative information

S.4 Consensus Mechanism

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.

- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

S.5 Incentive Mechanisms and Applicable Fees

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Open Campus

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Open Campus	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	10.45676	kWh/a

Qualitative information

S.4 Consensus Mechanism

Open Campus is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of

being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.

- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

Open Campus is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Ultiverse

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Ultiverse	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	10.44553	kWh/a

Qualitative information

S.4 Consensus Mechanism

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.

- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Automata

٥

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/

Field	Value	Unit
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Automata	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	9.78362	kWh/a

Qualitative information

S.4 Consensus Mechanism

Automata is present on the following networks: Binance Smart Chain, Ethereum, Polygon.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators

and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.

- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Automata is present on the following networks: Binance Smart Chain, Ethereum, Polygon.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
- Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain, ethereum, polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Tensor

1

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Tensor	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	9.75138	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:
 - The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

vita_inu

Ş

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	vita_inu	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	9.73473	kWh/a

Qualitative information

S.4 Consensus Mechanism

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the

energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

BinaryX

¢

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	BinaryX	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	9.46050	kWh/a

Qualitative information

S.4 Consensus Mechanism

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being

selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Coin98

98

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Coin98	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	8.68440	kWh/a

Qualitative information

S.4 Consensus Mechanism

Coin98 is present on the following networks: Avalanche, Binance Smart Chain, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and Avalanche.

Avalanche Consensus Process:

- 1. Snowball Protocol:
 - Random Sampling: Each validator randomly samples a small, constant-sized subset of other validators.
 - Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred transaction.
 - Confidence Counters: Validators maintain confidence counters for each transaction, incrementing them each time a sampled validator supports their preferred transaction.
 - Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the transaction is considered accepted.
- 2. Snowflake Protocol:
 - Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process. Validators decide between two conflicting transactions.
 - Binary Confidence: Confidence counters are used to track the preferred binary decision.
 - Finality: When a binary decision reaches a certain confidence level, it becomes final.
- 3. Avalanche Protocol:
 - DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing for parallel processing and higher throughput.
 - Transaction Ordering: Transactions are added to the DAG based on their dependencies, ensuring a consistent order.
 - Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT) consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently

active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process

- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Coin98 is present on the following networks: Avalanche, Binance Smart Chain, Solana.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a combination of validators, staking, and a novel approach to consensus to ensure the network's security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked influences their probability of being selected to propose or validate new blocks.

- Rewards: Validators earn rewards for their participation in the consensus process. These rewards are proportional to the amount of AVAX staked and their uptime and performance in validating transactions.
- Delegation: Validators can also accept delegations from other token holders. Delegators share in the rewards based on the amount they delegate, which incentivizes smaller holders to participate indirectly in securing the network.

2. Economic Incentives:

- Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards are distributed from the network's inflationary issuance of AVAX tokens.
- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes fees for simple transactions, smart contract interactions, and the creation of new assets on the network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the financial disincentive of lost future rewards for validators who are not consistently online or act maliciously.
- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate transactions to continue earning rewards. Poor performance or malicious actions result in missed rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

- 1. Transaction Fees:
 - Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand and the complexity of the transactions. This ensures that fees remain fair and proportional to the network's usage.
 - Fee Burning: A portion of the transaction fees is burned, permanently removing them from circulation. This deflationary mechanism helps to balance the inflation from block rewards and incentivizes token holders by potentially increasing the value of AVAX over time.
- 2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the computational resources required. These fees ensure that the network remains efficient and that resources are used responsibly.

- 3. Asset Creation Fees:
 - New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche network. These fees help to prevent spam and ensure that only serious projects use the network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.

2. Block Rewards:

- Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.

- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) avalanche, binance_smart_chain, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

polydoge

poly

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/

Field	Value	Unit
S.3 Name of the crypto-asset	polydoge	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	7.97292	kWh/a

Qualitative information

S.4 Consensus Mechanism

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.
 - Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain

- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Standard Tokenization Protocol

4

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Standard Tokenization Protocol	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	7.50834	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Trust Wallet

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Trust Wallet	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	6.22016	kWh/a

Qualitative information

S.4 Consensus Mechanism

Trust Wallet is present on the following networks: Binance Beacon Chain, Binance Smart Chain, Solana.

Binance Beacon Chain operated on a Delegated Proof of Stake (DPoS) consensus mechanism before its operations were discontinued in fall 2024 and its migration to Binance Smart Chain; validators were elected by token holders through staking and voting, limiting active participation to a manageable number of nodes while maintaining decentralization; validators were selected based on the staking weight of their delegators, ensuring stakeholder interests were proportionally represented in the validation process; regular validator rotation was implemented to promote fairness and decentralization by allowing multiple participants to contribute to the network; the system was designed to tolerate some degree of validator failures while maintaining the network's operational integrity, ensuring resilience.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being

selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH

sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

- 4. Consensus and Finalization:
 - Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Trust Wallet is present on the following networks: Binance Beacon Chain, Binance Smart Chain, Solana.

The Binance Beacon Chain incentivized validators and ensured fee transparency before its migration to Binance Smart Chain; validators were rewarded solely through transaction fees, with no block rewards provided, aligning incentives with network usage and transaction volume; transaction fees were calculated and displayed upfront, ensuring clarity for users and promoting trust in the fee structure; a portion of transaction fees collected in BNB was burned, reducing the overall token supply and contributing to a deflationary economic model.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:
 - Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.
- 4. Smart Contract Fees:
 - Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.

This encourages widespread participation in securing the network and ensures decentralization.

- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

- 1. Low and Predictable Fees:
 - Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.
- 2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_beacon_chain, binance_smart_chain, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Mobox

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/

Field	Value	Unit
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Mobox	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	6.20312	kWh/a

Qualitative information

S.4 Consensus Mechanism

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Lista DAO

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Lista DAO	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	6.11494	kWh/a

Qualitative information

S.4 Consensus Mechanism

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.

🕞 Finst

- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:
 - Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.
- 3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

SafePal Token

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	SafePal Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	5.16832	kWh/a

Qualitative information

S.4 Consensus Mechanism

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.

- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Shentu

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Shentu	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	4.45752	kWh/a

Quantitative information

Qualitative information

S.4 Consensus Mechanism

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.

- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a

🕞 Finst

precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Ice Network

⋇

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Ice Network	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	4.30419	kWh/a

Qualitative information

S.4 Consensus Mechanism

Ice Network is present on the following networks: Arbitrum, Binance Smart Chain, Solana.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.
- 5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).

🕞 Finst

This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.

- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

- 1. Transaction Validation:
 - Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.
- 2. PoH Sequence Generation:
 - A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.
- 3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Ice Network is present on the following networks: Arbitrum, Binance Smart Chain, Solana.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.

- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.
 - Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, binance_smart_chain, solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

BakeryToken

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	BakeryToken	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	4.22905	kWh/a

Qualitative information

S.4 Consensus Mechanism

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.

- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance smart chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

notcoin

Field

S.1 Name

Value
Finst B.V.

Quantitative information

S.2 Relevant legal entity identifier

S.3 Name of the crypto-asset	notcoin
S.6 Beginning of the period to which the disclosure relates	2024-06-30
S.7 End of the period to which the disclosure relates	2025-06-30
S.8 Energy consumption	3.79910

Oualitative information

S.4 Consensus Mechanism

Toncoin utilizes a Proof of Stake (PoS) model with the Catchain consensus algorithm to provide a secure, scalable, and efficient multi-chain environment.

Core Components of Toncoin's Consensus:

- 1. Proof of Stake (PoS) with Validators:
 - Validator Role: Validators are required to stake Toncoin to participate in consensus. They validate transactions and secure the network by processing blocks and maintaining network integrity.

 Δ

Unit

kWh/a

724500UI8UD7HKGV|X65

2. Catchain Consensus Algorithm:

- High Scalability and Speed: The Catchain consensus protocol is specifically designed for Toncoin's multi-chain architecture, optimizing for fast and scalable operations across multiple shards.
- Multi-Chain Compatibility: Catchain supports a sharded environment, allowing different chains (or shards) to reach consensus efficiently. This approach enhances the network's ability to process a high volume of transactions in parallel.
- 3. Byzantine Fault Tolerance (BFT):

Fault Tolerance: The Catchain protocol is Byzantine Fault Tolerant (BFT), meaning it can tolerate some level of malicious or faulty behavior among validators. This BFT compliance ensures that the network remains secure and functional even when a minority of validators act maliciously.

- 4. Validator Rotation and Slashing:
 - Regular Rotation: Validators are rotated regularly to enhance decentralization and security. This system prevents any single validator or group from maintaining control over consensus indefinitely.
 - Slashing for Malicious Behavior: Validators who act maliciously or fail to perform their duties may be penalized through slashing, losing a portion of their staked Toncoin. This discourages dishonest behavior and promotes reliable network participation.

S.5 Incentive Mechanisms and Applicable Fees

Toncoin incentivizes network security, participation, and efficiency through staking rewards, transaction fees, and slashing penalties.

Incentive Mechanisms:

1. Staking Rewards for Validators:

Rewards for Securing the Network: Validators earn staking rewards for actively participating in the network's consensus process and ensuring its security. These rewards are provided in Toncoin and are proportional to each validator's staked amount, encouraging validators to maintain their roles responsibly.

2. Transaction Fees:

Ongoing Income for Validators: Validators also receive a share of transaction fees from the blocks they validate, providing a consistent reward that grows with network usage. This additional income incentivizes validators to process transactions accurately and efficiently.

3. Decentralization through Validator Rotation:

Fair and Balanced Participation: The frequent rotation of validators ensures that new participants can join the validator set, promoting decentralization and preventing monopolization of the network by a small group of validators.

4. Slashing Mechanism:

Penalties for Dishonest Behavior: To maintain security, Toncoin enforces a slashing mechanism that penalizes validators who act maliciously or fail to fulfill their duties. This risk of losing staked Toncoin encourages validators to behave honestly and fulfill their responsibilities.

Applicable Fees:

Transaction Fees: Transaction fees on the TON blockchain are paid in Toncoin. These fees vary based on transaction complexity and network demand, ensuring that validators are compensated for their work and that resources are efficiently utilized.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) toncoin is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

vertex_protocol

Y

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	vertex_protocol	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	3.58422	kWh/a

Qualitative information

S.4 Consensus Mechanism

vertex_protocol is present on the following networks: Arbitrum, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability and reduce transaction costs. It assumes that transactions are valid by default and only verifies them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

- 1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and batches them.
- 2. State Commitment: These batches are submitted to Ethereum with a state commitment.
- 3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.
- 4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to identify the fraudulent transaction. The final operation is executed on Ethereum to determine the correct state.

5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

vertex_protocol is present on the following networks: Arbitrum, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to ensure the security and integrity of transactions on its network. The key mechanisms include:

- 1. Validators and Sequencers:
 - Sequencers are responsible for ordering transactions and creating batches that are processed off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
 - Validators monitor the sequencers' actions and ensure that transactions are processed correctly. Validators verify the state transitions and ensure that no invalid transactions are included in the batches.
- 2. Fraud Proofs:
 - Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for quick transaction finality and high throughput.
 - Challenge Period: There is a predefined period during which anyone can challenge the validity of a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious behavior.
 - Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent transaction is reverted, and the dishonest actor is penalized.
- 3. Economic Incentives:
 - Rewards for Honest Behavior: Participants in the network, such as validators and sequencers, are incentivized through rewards for performing their duties honestly and efficiently. These rewards come from transaction fees and potentially other protocol incentives.
 - Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit invalid transactions are penalized. This can include slashing of staked tokens or other forms of economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

- 1. Transaction Fees:
 - Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are typically lower than Ethereum mainnet fees due to the reduced computational load on the main chain.
 - Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer. This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
- 2. L1 Data Fees:
 - Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee, which accounts for the gas required to publish these state updates on Ethereum.
 - Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) arbitrum, ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Tokocrypto Token

б

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/

Field	Value	Unit
S.3 Name of the crypto-asset	Tokocrypto Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1.87653	kWh/a

Qualitative information

S.4 Consensus Mechanism

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Pundi X Token

Quantitative information	
--------------------------	--

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Pundi X Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	1.21102	kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022, replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator is randomly chosen to propose the next block. Once proposed the other validators verify the blocks integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12 seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks, but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security, and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) ethereum is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Coti

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Coti	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	0.89484	kWh/a

Qualitative information

S.4 Consensus Mechanism

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).

🕞 Finst

This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the

Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Hooked Protocol

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Hooked Protocol	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	0.69443	kWh/a

Qualitative information

S.4 Consensus Mechanism

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:
 - Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.
- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

NFPrompt

Ø

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	NFPrompt	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	0.03006	kWh/a

Qualitative information

S.4 Consensus Mechanism

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security.

Core Components:

- 1. Validators (so-called "Cabinet Members"): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network's security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security.
- 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security.
- 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process
- 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.
- 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network.
- 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives
- 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB.
- 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network's security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance.
- 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently.

S.5 Incentive Mechanisms and Applicable Fees

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

- 1. Validators:
 - Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards.
 - Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks.
- 2. Delegators:
 - Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks.
 - Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network's security and decentralization by choosing reliable validators.
- 3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience.

- 4. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network.
 - Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

- 1. Transaction Fees:
 - Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators.
 - Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet.
- 2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the

energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Leo Token

R

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	Leo Token	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	0.00000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

- 1. Proof of Stake (PoS):
 - Validator Selection: Validators on the Polygon network are selected based on the number of MATIC tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to validators. Delegators share in the rewards earned by validators.
- 2. Plasma Chains:
 - Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the main Ethereum chain. These child chains can process transactions off-chain and submit only the final state to the Ethereum main chain, significantly increasing throughput and reducing congestion.
 - Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators confirm the validity of transactions and include them in blocks.

- 2. Block Production:
 - Proposing and Voting: Validators propose new blocks based on their staked tokens and participate in a voting process to reach consensus on the next block. The block with the majority of votes is added to the blockchain.
 - Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain are submitted to the Ethereum main chain. This process ensures the security and finality of transactions on the Polygon network.
- 3. Plasma Framework:
 - Child Chains: Transactions can be processed on child chains created using the Plasma framework. These transactions are validated off-chain and only the final state is submitted to the Ethereum main chain.
 - Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the consensus process. These rewards are distributed in MATIC tokens and are proportional to the amount staked and the performance of the validator.
 - Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This provides an additional financial incentive to maintain the network's integrity and efficiency.
- 2. Delegation:
 - Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate to. This encourages more token holders to participate in securing the network by choosing reliable validators.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are selected to validate transactions and produce new blocks based on the number of tokens they have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction fees for their services.
 - Block Production: Validators are responsible for proposing and voting on new blocks. The selected validator proposes a block, and other validators verify and validate it. Validators are incentivized to act honestly and efficiently to earn rewards and avoid penalties.

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring the security and finality of transactions processed on Polygon. This provides an additional layer of security by leveraging Ethereum's robustness.
- 2. Delegators:
 - Delegation: Token holders who do not wish to run a validator node can delegate their MATIC tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators, incentivizing them to choose reliable and performant validators.
 - Shared Rewards: Rewards earned by validators are shared with delegators, based on the proportion of tokens delegated. This system encourages widespread participation and enhances the network's decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized through a process called slashing if they engage in malicious behavior or fail to perform their duties correctly. This includes double-signing or going offline for extended periods. Slashing results in the loss of a portion of the staked tokens, acting as a strong deterrent against dishonest actions.
 - Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to participate in the consensus process, ensuring they have a vested interest in maintaining network security and integrity. Fees on the Polygon Blockchain
- 4. Transaction Fees:
 - Low Fees: One of Polygon's main advantages is its low transaction fees compared to the Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to encourage high transaction throughput and user adoption.
 - Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction complexity. However, they remain significantly lower than those on Ethereum, making Polygon an attractive option for users and developers.
- 5. Smart Contract Fees:
 - Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon incurs fees based on the computational resources required. These fees are also paid in MATIC tokens and are much lower than on Ethereum, making it cost-effective for developers to build and maintain decentralized applications (dApps) on Polygon.
- 6. Plasma Framework:
 - State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of transactions, which are periodically batched and committed to the Ethereum main chain. Fees associated with these processes are also paid in MATIC tokens, and they help reduce the overall cost of using the network.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) polygon is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

My Neighbor Alice

Quantitative information

Field	Value	Unit
S.1 Name	Finst B.V.	/
S.2 Relevant legal entity identifier	724500UI8UD7HKGVJX65	/
S.3 Name of the crypto-asset	My Neighbor Alice	/
S.6 Beginning of the period to which the disclosure relates	2024-06-30	/
S.7 End of the period to which the disclosure relates	2025-06-30	/
S.8 Energy consumption	0.00000	kWh/a

Qualitative information

S.4 Consensus Mechanism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security.

Core Concepts:

- 1. Proof of History (PoH):
 - Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time.
 - Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions.
- 2. Proof of Stake (PoS):
 - Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks.
 - Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network's criteria, such as having correct signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH

sequence to order transactions within the block, ensuring that all transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

- 1. Incentives for Validators:
 - Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator's stake and performance.
 - Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently.
- 2. Security:
 - Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens.
 - Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators.
- 3. Economic Penalties:
 - Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions.

Incentive Mechanisms:

- 1. Validators:
 - Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks.
 - Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity.
- 2. Delegators:
 - Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization.
- 3. Economic Security:
 - Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth.

3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s) solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

This report was provided by:

Crypto Risk Metrics

The IDW PS 951-certified SaaS tool "Crypto Risk Metrics" supports regulated financial institutions in the risk-based assessment of cryptocurrencies, Delta-1 Certificates ("Crypto ETPs") and tokenized securities. ESG data, market conformity checks and KARBV-compliant price data complete the product range.

As a professional compliance expert, we provide support with:

ESG data for crypto-assets

White Papers for crypto-assets

Risk management

Market conformity check Compliant price data